960 resultados para self revelation mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globalisation and societal change suggest the language and literacy skills needed to make meaning in our lives are increasing and changing radically. Multiliteracies are influencing the future of literacy teaching. One aspect of the pedagogy of multiliteracies is recruiting learners’ previous and current experiences as an integral part of the learning experience. This paper examines the implications of results from a project that examined student responses to a postmodern picture book, in particular, ways teachers might develop students’ self-knowledge about reading. It draws on Freebody and Luke’s Four Resources Model of Reading and recently developed models for teaching multiliteracies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have evaluated the reliability of lifetime sun exposure estimated from inquiring about the number of hours people spent outdoors in a given period on a typical weekday or weekend day (the time-based approach). Some investigations have suggested that women have a particularly difficult task in estimating time outdoors in adulthood due to their family and occupational roles. We hypothesized that people might gain additional memory cues and estimate lifetime hours spent outdoors more reliably if asked about time spent outdoors according to specific activities (an activity-based approach). Using self-administered, mailed questionnaires, test-retest responses to time-based and to activity-based approaches were evaluated in 124 volunteer radiologic technologist participants from the United States: 64 females and 60 males 48 to 80 years of age. Intraclass correlation coefficients (ICC) were used to evaluate the test-retest reliability of average number of hours spent outdoors in the summer estimated for each approach. We tested the differences between the two ICCs, corresponding to each approach, using a t test with the variance of the difference estimated by the jackknife method. During childhood and adolescence, the two approaches gave similar ICCs for average numbers of hours spent outdoors in the summer. By contrast, compared with the time-based approach, the activity-based approach showed significantly higher ICCs during adult ages (0.69 versus 0.43, P = 0.003) and over the lifetime (0.69 versus 0.52, P = 0.05); the higher ICCs for the activity-based questionnaire were primarily derived from the results for females. Research is needed to further improve the activity-based questionnaire approach for long-term sun exposure assessment. (Cancer Epidemiol Biomarkers Prev 2009;18(2):464–71)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Practice makes perfect’ expresses the common misconception that repetitive practice without appropriate feed-back will deliver improvement in tasks being practised. This paper explores the implementation of a student-driven feed-back mechanism and shows how functional and aesthetic understanding can be progressively enhanced through reflective practice. More efficient practice of clearly understood tasks will enhance dance training outcomes. We were looking for ways to improve teaching efficiency, effectiveness of the students’ practice in the studio and application of safe dance practices. We devised a web-based on-line format, ‘Performing Reflective Practice’, designed to augment and refine studio practice. Only perfect practice makes perfect!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Incidence and mortality from skin cancers including melanoma are highest among men 50 years or older. Thorough skin self-examination may be beneficial to improve skin cancers outcomes.--------- Objectives: To develop and conduct a randomized-controlled trial of a video-based intervention to improve skin self-examination behavior among men 50 years or older.--------- Methods: Pilot work ascertained appropriate targeting of the 12-minute intervention video towards men 50 years or older. Overall, 968 men were recruited and 929 completed baseline telephone assessment. Baseline analysis assessed randomization balance and demographic, skin cancer risk and attitudinal factors associated with conducting a whole-body skin self-examination or receiving a whole-body clinical skin examination by a doctor during the past 12 months.--------- Results: Randomization resulted in well-balanced intervention and control groups. Overall 13% of men reported conducting a thorough skin self-examination using a mirror or the help of another person to check difficult to see areas, while 39% reported having received a whole-body skin examination by a doctor within the past 12 months. Confidence in finding time for and receiving advice or instructions by a doctor to perform a skin self-examination were among the factors associated with thorough skin self-examination at baseline.---------- Conclusions: Men 50 years or older can successfully be recruited to a video-based intervention trial with the aim reduce their burden through skin cancer. Randomization by computer generated randomization list resulted in good balance between control and intervention group and baseline analysis determined factors associated with skin cancer early detection behavior at baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a book review of Indigenous Peoples: Self-Determination Knowledge Indigeneity. Edited by Henry Minde in collaboration with Harald Gaski, Svein Jentoft and Georges Midre. Published by Eburon Academic Publishers in Delft, the Netherlands. Paperback, 382 pages, no index. AUD. $79.99. ISBN 978-90-5972-204-0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self Landscape is an introductory image of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. Self Landscape depicts an inverted image of the outside environment - a revegetated farmland in the Great Southern Region of Western Australia. The light from the exterior landscape passes though the pinhole camera's aperture and illuminates the internal scene which includes that part of the landscape upon which the floorless room is erected, along with the author who is standing inside. The text "Hotspot" appears where the author has scribed that word with a torch during the long exposure. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. It is through the agency of light that we construct our connectivity to landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the use of email as a means to access the self-constructions of gifted young adolescents. Australian research shows that gifted young adolescents may feel more lonely and misunderstood than their same-age counterparts, yet they are seldom asked about their lives. Emerging use of online methods as a means of access to individual lives and perceptions has demonstrated the potential offered by the creation of digital texts as narrative data. Details are given of a qualitative study that engaged twelve children aged between 10 and 14 years, who were screened for giftedness, in a project involving the generation of emailed journal entries sent over a period of 6 months. With emphasis on participatory principles, individual young adolescents produced self-managed journal entries that were written and sent to the researcher from personal computers outside the school setting. Drawing from a theoretical understanding of self as constructed within dialogic relationships, the digital setting of email is proposed as a narrative space that fosters healthy self-disclosure. This paper outlines the benefits of using email as a means to explore emotions, promote reflective accounts of self and support the development of a personal language for self-expression. Individual excerpts will be presented to show that the harnessing of personal narratives within an email context has potential to yield valuable insights into the emotions, personal realities and experiences of gifted young adolescents. Findings will be presented to show that the co-construction of self-expressive and explanatory narratives supported by a facilitative adult listener promoted healthy self-awareness amongst participants. This paper contributes to appreciative conversations about using online methods as a flexible and practical avenue for conducting educational research. Furthermore, digital writing in email form will be presented as having distinct advantages over face-to-face methods when utilised with gifted young adolescents who may be unwilling to disclose information within school-based settings.