987 resultados para reduced nicotinamide adenine dinucleotide phosphate oxidase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss-or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi. J. Leukoc. Biol. 86: 989-998; 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of the present study is to investigate serum BDNF levels in older depressed patients as compared to healthy elderly controls. Methods. Twenty-nine elderly subjects with major depression and 42 healthy older adults were enrolled to this study. All depressed patients were antidepressant-free for at least 1 month prior clinical and laboratorial assessments. Serum BDNF levels were determined by sandwich ELISA. Results. BDNF levels were lower in elderly depressed patients as compared to controls (P = 0.034). Patients with late-onset depression had the lowest BDNF level (median 478.5, interquartile range 373.5-740.9 pg/l) when compared to early-onset depression (median 620.7, interquartile range 366.1-971.9 pg/l) and healthy controls (median 711.3, interquartile range 534.7-1181.0 pg/l) (P < 0.03). Conclusions. Reduced serum BDNF level may be a state marker of late-life depression in non-medicated elderly patients. Our findings provide further evidences that reduced neurotrophic support may have an important role in the physiopathology of late-life depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence of a reciprocal fronto-limbic network in the pathogenesis of mood disorders. Prior in vivo proton ((1)H) spectroscopy studies provide evidence of abnormal neurochemical levels in the cingulate and dorsolateral prefrontal cortex (DLPFC) of adult subjects with major depressive disorder (MOD). We examined whether similar abnormalities occur in children and adolescents with MDD. We collected two-dimensional multi-voxel in vivo 1H spectroscopy data at 1.5 Tesla to quantify levels of N-acetyl-aspartate (NAA), glycerolphosphocholine plus phosphocholine (GPC + PC), and phosphocreatine plus creatine (PCr + Cr) in the DLPFC, medial prefrontal cortex (MPFC), and anterior cingulate (AC) of children and adolescents aged 8-17 years with MDD (n = 16) compared with healthy control subjects (n = 38). Analysis of covariance with age and gender as covariates was performed. MDD subjects showed significantly lower levels of NAA in the right MPFC and right AC than controls. MDD subjects also had significantly lower levels of GPC + PC in the right AC than control subjects. There were no significant differences in other metabolites in the studied regions. Pediatric patients with MDD exhibit neurochemical alterations in prefrontal cortex regions that are important in the monitoring and regulation of emotional states. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299:F872-F881, 2010. First published July 14, 2010; doi:10.1152/ajprenal.00654.2009.-Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 +/- 0.10 vs. 0.41 +/- 0.04 nmol/cm(2)xs), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 +/- 0.05 vs. 1.26 +/- 0.11 nmol/cm(2)xs). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone disease is a common disorder of bone remodeling and mineral metabolism, which affects patients with chronic kidney disease. Minor changes in the serum level of a given mineral can trigger compensatory mechanisms, making it difficult to evaluate the role of mineral disturbances in isolation. The objective of this study was to determine the isolated effects that phosphate and parathyroid hormone (PTH) have on bone tissue in rats. Male Wistar rats were subjected to parathyroidectomy and 5/6 nephrectomy or were sham-operated. Rats were fed diets in which the phosphate content was low, normal, or high. Some rats received infusion of PTH at a physiological rate, some received infusion of PTH at a supraphysiological rate, and some received infusion of vehicle only. All nephrectomized rats developed moderate renal failure. High phosphate intake decreased bone volume, and this effect was more pronounced in animals with dietary phosphate overload that received PTH infusion at a physiological rate. Phosphate overload induced hyperphosphatemia, hypocalcemia, and changes in bone microarchitecture. PTH at a supraphysiological rate minimized the phosphate-induced osteopenia. These data indicate that the management of uremia requires proper control of dietary phosphate, together with PTH adjustment, in order to ensure adequate bone remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most patients with chronic kidney disease experience abnormalities in serum calcium, phosphorus, parathyroid hormone, and vitamin D metabolism. These can lead to vascular calcification (VC), which has been associated with increased risk for cardiovascular disease and mortality. Although hyperphosphatemia is believed to be a risk factor for mortality and VC, no randomized trial was ever designed to demonstrate that lowering phosphate reduces mortality. Nonetheless, binders have been used extensively, and the preponderance of evidence shows that sevelamer slows the development of VC whereas calcium salts do not. Four studies have demonstrated a slower progression of VC with sevelamer than with calcium-containing binders, although a fifth study showed nonsuperiority. Conversely, the results on mortality with sevelamer have been variable, and data on calcium-based binders are nonexistent. Improved survival with sevelamer was demonstrated in a small randomized clinical trial, whereas a larger randomized trial failed to show a benefit. In addition, preclinical models of renal failure and preliminary clinical data on hemodialysis patients suggest a potential benefit for bone with sevelamer. Meanwhile, several randomized and observational studies suggested no improvement in bone density and fracture rate, and a few noted an increase in total and cardiovascular mortality in the general population given calcium supplements. Although additional studies are needed, there are at least indications that sevelamer may improve vascular and bone health and, perhaps, mortality in hemodialysis patients, whereas data on calcium-based binders are lacking. Clin J Am Soc Nephrol 5: S31-S40, 2010. doi: 10.2215/CJN.05880809

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high-versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulatioin in BD. Objective: To use tract-based spatial statistics (TBSS) to examine VVM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design: Cross-sectional, case-control, whole-brain DTI using TBSS. Setting: University research institute. Participants: Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type 1 (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures: Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results: Subjects with BD vs controls had significantly greater FA (t > 3.0, P <=.05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <=.05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P <.01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P <.01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions: To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book provides information on new and existing developments and the ways they can be combined to preserve particular foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The present study evaluated changes in autonomic control of the cardiovascular system in conscious rats following blockade of endothelin (ET) receptors with bosentan. 2. Rats were treated with bosentan or vehicle (5% gum arabic) for 7 days by gavage. 3. Baseline heart rate (HR) was higher in the bosentan-treated group compared with the control group (418 +/- 5 vs 357 +/- 4 b.p.m., respectively; P < 0.001). This baseline tachycardia was associated with a lower baroreflex sensitivity of the bradycardiac and tachycardiac responses in the bosentan-treated group compared with the control group. Sequential blockade of the parasympathetic and sympathetic autonomic nervous system with methylatropine and propranolol showed a higher intrinsic HR in the bosentan-treated group compared with the control group (411 +/- 5 vs 381 +/- 4 b.p.m., respectively; P < 0.05). This was accompanied by a higher cardiac sympathetic tone (31 +/- 1 vs 13 +/- 1%, respectively; P < 0.01) and a lower vagal parasympathetic tone (69 +/- 2 vs 87 +/- 2%, respectively; P < 0.01) in the bosentan-treated group compared with the control group. Variance and high-frequency oscillations of pulse interval (PI) variability in absolute and normalized units were lower in the bosentan-treated group than in the control group. Conversely, low-frequency (LF) oscillations of PI variability in absolute and normalized units, as well as variance and LF oscillations of systolic arterial pressure variability, were greater in the bosentan-treated group than the control group. 4. Overall, the data indicate an increased cardiac sympathetic drive, as well as lower vagal parasympathetic activity and baroreflex sensitivity, in conscious rats after chronic blockade of ET receptors with bosentan.