972 resultados para recycling center
Resumo:
The synthesis of [Rh-2(COD)(2)(dppm)(mu(2)-Cl)] BF4 (1) (COD) 1,5-cyclooctadiene, dppm) bis(diphenylphosphino) methane) from simple precursors is reported. This is a rare example of a dirhodium complex with an open [Rh-2(mu(2)-dppm)(mu(2)-Cl)] core. The complex has been used to affect the hydrogenation of styrene and benzo[b] thiophene with total selectivity and competitive rates of reaction. The recycling of the catalyst has been achieved by the entrapment of 1 in silica by a sol-gel method to produce a recyclable solid catalyst.
Resumo:
This single center study is the largest series of renal transplant recipients and donors screened for the commonest prothrombotic genotypes. A total of 562 transplant recipients and 457 kidney donors were genotyped for the factor V Leiden and prothrombin G20210A mutations. The prevalence of heterozygous factor V Leiden was 3.4% and 2.6% and prothrombin G20210A was 2.0% and 1.1% in recipients and donors, respectively, similar frequencies to that of the general U.K. population. The 30-day and 1-year graft survival rates in recipients with thrombophilic mutations were 93% and 93%, compared with 88% and 82% in patients without these mutations (log-rank P =0.34). Thrombophilia in recipients (odds ratio 0.55; confidence interval 0.06-2.29; P =0.56) or in donors (odds ratio 1.53; confidence interval 0.27-5.74; P =0.46) did not correlate with graft loss at 30 days after transplantation. In contrast to recent reports, this study did not demonstrate an association between thrombophilia and renal allograft loss, and routine screening is not recommended.
Resumo:
The nitrogen-vacancy (NV) center is a paramagnetic defect in diamond with applications as a qubit. Here, we investigate its electronic structure by using ab initio density functional theory for five different NV center models of two different cluster sizes. We describe the symmetry and energetics of the low-lying states and compare the optical frequencies obtained to experimental results. We compute the major transition of the negatively charged NV centers to within 25–100 meV accuracy and find that it is energetically favorable for substitutional nitrogens to donate an electron to NV0. The excited state of the major transition and the NV0 state with a neutral donor nitrogen are found to be close in energy.
Resumo:
Voltammetric studies of the reduction of oxygen in the room temperature ionic liquid [C(4)dmim][N(Tf)(2)] have revealed a significant positive shift in the back peak potential, relative to that expected for a simple electron transfer. This shift is thought to be due to the strong association of the electrogenerated superoxide anion with the solvent cation. In this work we quantitatively simulate the microdisc electrode voltammetry using a model based upon a one-electron reduction followed by a reversible chemical step, involving the formation of the [C(4)dmim](+)center dot center dot center dot O-2(center dot-) ion-pair, and in doing so we extract a set of parameters completely describing the system. We have simulated the voltammetry in the absence of a following chemical step and have shown that it is impossible to simultaneously fit both the forward and reverse peaks. To further support the parameters extracted from fitting the experimental voltammetry, we have used these parameters to independently simulate the double step chronoamperometric response and found excellent agreement. The parameters used to describe the association of the O-2(center dot-) with the [C(4)dmim](+) were k(f) = 1.4 x 10(3) s(-1) for the first-order rate constant and K-eq = 25 for the equilibrium constant.
Resumo:
The voltammetry and kinetics of the Ag vertical bar Ag+ system (commonly used as a reference electrode material in both protic/aprotic and RTIL solvents) was studied in the room-temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr][NTf2] on a 10 mu m diameter Pt electrode. For the three silver salts investigated (AgOTf, AgNTf2, and AgNO3, where OTf- = trifluoromethanesulfonate, NTf2- = bis(trifluoromethylsulfonyl)imide, and NO3- = nitrate), the voltammetry gave rise to a redox couple characteristic of a
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.