969 resultados para planets : rings
Resumo:
The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available.
Resumo:
To improve our understanding of the Asian monsoon system, we developed a hydroclimate reconstruction in a marginal monsoon shoulder region for the period prior to the industrial era. Here, we present the first moisture sensitive tree-ring chronology, spanning 501 years for the Dieshan Mountain area, a boundary region of the Asian summer monsoon in the northeastern Tibetan Plateau. This reconstruction was derived from 101 cores of 68 old-growth Chinese pine (Pinus tabulaeformis) trees. We introduce a Hilbert–Huang Transform (HHT) based standardization method to develop the tree-ring chronology, which has the advantages of excluding non-climatic disturbances in individual tree-ring series. Based on the reliable portion of the chronology, we reconstructed the annual (prior July to current June) precipitation history since 1637 for the Dieshan Mountain area and were able to explain 41.3% of the variance. The extremely dry years in this reconstruction were also found in historical documents and are also associated with El Niño episodes. Dry periods were reconstructed for 1718–1725, 1766–1770 and 1920–1933, whereas 1782–1788 and 1979–1985 were wet periods. The spatial signatures of these events were supported by data from other marginal regions of the Asian summer monsoon. Over the past four centuries, out-of-phase relationships between hydroclimate variations in the Dieshan Mountain area and far western Mongolia were observed during the 1718–1725 and 1766–1770 dry periods and the 1979–1985 wet period.
Resumo:
In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.
Resumo:
We present a 1200 year drought reconstruction for the European Alpine region based on carbon isotope variations of tree rings from living larch trees and historic timber. The carbon isotope fractionation at the study site is sensitive to summer precipitation, temperature, and irradiance, resulting in a stable and high correlation with a drought index for interannual to decadal frequencies and possibly beyond (r(2)=0.58 for 1901-2004, July/August). When combining this information with maximum latewood density-derived summer temperature, a strongly reduced occurrence of summer droughts during the warm A.D. 900-1200 period is evident, coinciding with the Medieval Climate Anomaly (MCA), with a shift to colder and drier conditions for the subsequent centuries. The warm-wet MCA contrasts strongly with the climate of the drought-prone warm phase of the recent decades, indicating different forcing mechanism for these two warm periods and pointing to beneficial conditions for agriculture and human well-being during the MCA in this region.
Resumo:
PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
Resumo:
Context. To date, calculations of planet formation have mainly focused on dynamics, and only a few have considered the chemical composition of refractory elements and compounds in the planetary bodies. While many studies have been concentrating on the chemical composition of volatile compounds (such as H2O, CO, CO2) incorporated in planets, only a few have considered the refractory materials as well, although they are of great importance for the formation of rocky planets. Aims. We computed the abundance of refractory elements in planetary bodies formed in stellar systems with a solar chemical composition by combining models of chemical composition and planet formation. We also considered the formation of refractory organic compounds, which have been ignored in previous studies on this topic. Methods. We used the commercial software package HSC Chemistry to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e., organic compounds are formed in the gas phase and are non-reactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results. Results show that refractory material represents more than 50 wt % of the mass of solids accreted by the simulated planets with up to 30 wt % of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt % of carbides are present in the planets, and pyroxene and olivine are formed in similar quantities. The model predicts planets that are similar in composition to those of the solar system. Starting from a common initial nebula composition, it also shows that a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. Conclusions. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.
Resumo:
von Hans Much
Resumo:
Context. Solar and extrasolar planets are the subject of numerous studies aiming to determine their chemical composition and internal structure. In the case of extrasolar planets, the composition is important as it partly governs their potential habitability. Moreover, observational determination of chemical composition of planetary atmospheres are becoming available, especially for transiting planets. Aims. The present works aims at determining the chemical composition of planets formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data for models of planet formation and evolution, and future interpretation of chemical composition of solar and extrasolar planets. Methods. We have developed a model that computes the composition of ices in planets in different stellar systems with the use of models of ice and planetary formation. Results. We provide the chemical composition, ice/rock mass ratio and C:O molar ratio for planets in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, we produce a wide variety of planetary chemical compositions as a function of the mass of the disk and distance to the star. The volatile species incorporated in planets are mainly composed of H2O, CO, CO2, CH3OH, and NH3. Icy or ocean planets have systematically higher values of molecular abundances compared to giant and rocky planets. Gas giant planets are depleted in highly volatile molecules such as CH4, CO, and N2 compared to icy or ocean planets. The ice/rock mass ratio in icy or ocean and gas giant planets is, respectively, equal at maximum to 1.01 ± 0.33 and 0.8 ± 0.5, and is different from the usual assumptions made in planet formation models, which suggested this ratio to be 2–3. The C:O molar ratio in the atmosphere of gas giant planets is depleted by at least 30% compared to solar value.
Resumo:
One of the minor products from the previously described peripheral -methylation of a magnesium()-20-methyl--pyrrocorphinate is a C-19-methylated 19,20-seco-corphinoid derivative which, on complexation with nickel() acetate, recyclizes to a nickel()-tetradehydro-corrinate.
Resumo:
A sigmatropic methyl shift from the angular position C-1 in ring to the position C-20 between rings and constitutes the crucial step in syntheses leading to a 20-methyl-isobacteriochlorin and to 20-methyl-pyrrocorphins which served as substrates in the investigation presented in the accompanying communication.
Resumo:
Past agricultural responses to climate variability can helps us to better understand the current and future impacts of climate change on agricultural production. We studied rye (Secale cereale) and barley (Hordeum vulgare) yield responses to temperature fluctuations in Finland during the period 1861–1913. Our analyses demonstrate the high sensitivity of non-industrialised northern agriculture to temperature anomalies. We found evidence of a strong relationship between monthly and seasonal mean temperatures and crop yields. In particular, high spring temperatures were associated with higher yields. Additionally, we tested temperature-sensitive tree-ring series for their value in indicating previous agricultural outputs. The results imply that tree-ring proxies (in particular, maximum latewood density) can provide novel material for studies of historical periods and locations where instrumentally measured climate and harvest data are not available.
Resumo:
Welsch (Projektbearbeiter): Ätzende Satire von konservativ/reaktionärer Seite auf den Verlauf der Münchener Märzrevolution in Form einer Petition der Schusterjungen zwecks Anerkennung ihrer Verdienste