864 resultados para parallel scalability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel device of multiple cylinder microelectrodes coupled with a parallel planar electrode was proposed. The feedback diffusion current at this device was studied using bilinear transformation of coordinates in the diffusion space, where lines of mass flux and equiconcentration are represented by orthogonal circular functions. The derived expression for the steady-state current shows that as the gap between cylindrical microelectrodes and planar electrode diminishes, greatly enhanced currents can be obtained with high signal-to-noise ratio. Other important geometrical parameters such as distance between adjacent microcylinders, cylinder radius, and number of microcylinders were also discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of determining the rate constant of a catalytic reaction using a parallel incident spectroelectrochemical cell was investigated in this work. Various spectroelectrochemical techniques were examined, including single-potential-step chronoabsorptometry, single-potential-step open-circuit relaxation chronoabsorptometry and double-potential-step chronoabsorptometry. The values determined for the kinetics of the ferrocyanide-ascorbic acid system are in agreement with the reported values. The parallel incident method is much more sensitive than the normal transmission method and can be applied to systems which have smaller molar absorptivities, larger rate constants or lower concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of computation required to solve many early vision problems is prodigious, and so it has long been thought that systems that operate in a reasonable amount of time will only become feasible when parallel systems become available. Such systems now exist in digital form, but most are large and expensive. These machines constitute an invaluable test-bed for the development of new algorithms, but they can probably not be scaled down rapidly in both physical size and cost, despite continued advances in semiconductor technology and machine architecture. Simple analog networks can perform interesting computations, as has been known for a long time. We have reached the point where it is feasible to experiment with implementation of these ideas in VLSI form, particularly if we focus on networks composed of locally interconnected passive elements, linear amplifiers, and simple nonlinear components. While there have been excursions into the development of ideas in this area since the very beginnings of work on machine vision, much work remains to be done. Progress will depend on careful attention to matching of the capabilities of simple networks to the needs of early vision. Note that this is not at all intended to be anything like a review of the field, but merely a collection of some ideas that seem to be interesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vernier offset is detected at once among straight lines, and reaction times are almost independent of the number of simultaneously presented stimuli (distractors), indicating parallel processing of vernier offsets. Reaction times for identifying a vernier offset to one side among verniers offset to the opposite side increase with the number of distractors, indicating serial processing. Even deviations below a photoreceptor diameter can be detected at once. The visual system thus attains positional accuracy below the photoreceptor diameter simultaneously at different positions. I conclude that deviation from straightness, or change of orientation, is detected in parallel over the visual field. Discontinuities or gradients in orientation may represent an elementary feature of vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective approach of simulating fluid dynamics on a cluster of non- dedicated workstations is presented. The approach uses local interaction algorithms, small communication capacity, and automatic migration of parallel processes from busy hosts to free hosts. The approach is well- suited for simulating subsonic flow problems which involve both hydrodynamics and acoustic waves; for example, the flow of air inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed measurements of the parallel efficiency of 2D and 3D simulations are presented, and a theoretical model of efficiency is developed which fits closely the measurements. Two numerical methods of fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes Processor Coupling, a mechanism for controlling multiple ALUs on a single integrated circuit to exploit both instruction-level and inter-thread parallelism. A compiler statically schedules individual threads to discover available intra-thread instruction-level parallelism. The runtime scheduling mechanism interleaves threads, exploiting inter-thread parallelism to maintain high ALU utilization. ALUs are assigned to threads on a cycle byscycle basis, and several threads can be active concurrently. Simulation results show that Processor Coupling performs well both on single threaded and multi-threaded applications. The experiments address the effects of memory latencies, function unit latencies, and communication bandwidth between function units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report describes a new protocol, the Unique Token Protocol, for reliable message communication. This protocol eliminates the need for end-to-end acknowledgments and minimizes the communication effort when no dynamic errors occur. Various properties of end-to-end protocols are presented. The unique token protocol solves the associated problems. It eliminates source buffering by maintaining in the network at least two copies of a message. A token is used to decide if a message was delivered to the destination exactly once. This technical report also presents a possible implementation of the protocol in a worm-hole routed, 3-D mesh network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the design and implementation of an integrated circuit and associated packaging to be used as the building block for the data routing network of a large scale shared memory multiprocessor system. A general purpose multiprocessor depends on high-bandwidth, low-latency communications between computing elements. This thesis describes the design and construction of RN1, a novel self-routing, enhanced crossbar switch as a CMOS VLSI chip. This chip provides the basic building block for a scalable pipelined routing network with byte-wide data channels. A series of RN1 chips can be cascaded with no additional internal network components to form a multistage fault-tolerant routing switch. The chip is designed to operate at clock frequencies up to 100Mhz using Hewlett-Packard's HP34 $1.2\\mu$ process. This aggressive performance goal demands that special attention be paid to optimization of the logic architecture and circuit design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional parallel computer architectures do not provide support for non-uniformly distributed objects. In this thesis, I introduce sparsely faceted arrays (SFAs), a new low-level mechanism for naming regions of memory, or facets, on different processors in a distributed, shared memory parallel processing system. Sparsely faceted arrays address the disconnect between the global distributed arrays provided by conventional architectures (e.g. the Cray T3 series), and the requirements of high-level parallel programming methods that wish to use objects that are distributed over only a subset of processing elements. A sparsely faceted array names a virtual globally-distributed array, but actual facets are lazily allocated. By providing simple semantics and making efficient use of memory, SFAs enable efficient implementation of a variety of non-uniformly distributed data structures and related algorithms. I present example applications which use SFAs, and describe and evaluate simple hardware mechanisms for implementing SFAs. Keeping track of which nodes have allocated facets for a particular SFA is an important task that suggests the need for automatic memory management, including garbage collection. To address this need, I first argue that conventional tracing techniques such as mark/sweep and copying GC are inherently unscalable in parallel systems. I then present a parallel memory-management strategy, based on reference-counting, that is capable of garbage collecting sparsely faceted arrays. I also discuss opportunities for hardware support of this garbage collection strategy. I have implemented a high-level hardware/OS simulator featuring hardware support for sparsely faceted arrays and automatic garbage collection. I describe the simulator and outline a few of the numerous details associated with a "real" implementation of SFAs and SFA-aware garbage collection. Simulation results are used throughout this thesis in the evaluation of hardware support mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Euterpe is a real-time computer system for the modeling of musical structures. It provides a formalism wherein familiar concepts of musical analysis may be readily expressed. This is verified by its application to the analysis of a wide variety of conventional forms of music: Gregorian chant, Mediaeval polyphony, Back counterpoint, and sonata form. It may be of further assistance in the real-time experiments in various techniques of thematic development. Finally, the system is endowed with sound-synthesis apparatus with which the user may prepare tapes for musical performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC