898 resultados para oil analysis
Resumo:
This study investigates fast pyrolysis bio-oils produced from alkali-metal-impregnated biomass (beech wood). The impregnation aim is to study the catalytic cracking of the pyrolysis vapors as a result of potassium or phosphorus. It is recognized that potassium and phosphorus in biomass can have a major impact on the thermal conversion processes. When biomass is pyrolyzed in the presence of alkali metal cations, catalytic cracking of the pyrolysis liquids occurs in the vapor phase, reducing the organic liquids produced and increasing yields of water, char, and gas, resulting in a bio-oil that has a lower calorific value and an increased chance of phase separation. Beech wood was impregnated with potassium or phosphorus (K impregnation and P impregnation, respectively) in the range of 0.10-2.00 wt %. Analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles. Both potassium and phosphorus are seen to catalyze the pyrolytic decomposition of biomass and modify the yields of products. 3-Furaldehyde and levoglucosenone become more dominant products upon P impregnation, pointing to rearrangement and dehydration routes during the pyrolysis process. Potassium has a significant influence on cellulose and hemicellulose decomposition, not just on the formation of levoglucosan but also other species, such as 2(5H)-furanone or hydroxymethyl-cyclopentene derivatives. Fast pyrolysis processing has also been undertaken using a laboratory-scale continuously fed bubbling fluidized-bed reactor with a nominal capacity of 1 kg h-1 at the reaction temperature of 525 °C. An increase in the viscosity of the bio-oil during the stability assessment tests was observed with an increasing percentage of impregnation for both additives. This is because bio-oil undergoes polymerization while placed in storage as a result of the inorganic content. The majority of inorganics are concentrated in the char, but small amounts are entrained in the pyrolysis vapors and, therefore, end up in the bio-oil.
An empirical investigation of the impact of global energy transition on Nigerian oil and gas exports
Resumo:
18 months embargo on the thesis and check appendix for copy right materials
Resumo:
This paper estimates Bejarano and Charry (2014)’s small open economy with financial frictions model for the Colombian economy using Bayesian estimation techniques. Additionally, I compute the welfare gains of implementing an optimal response to credit spreads into an augmented Taylor rule. The main result is that a reaction to credit spreads does not imply significant welfare gains unless the economic disturbances increases its volatility, like the disruption implied by a financial crisis. Otherwise its impact over the macroeconomic variables is null.
Resumo:
TESLA project (Transfering Energy Save Laid on Agroindustry) financed by the European Commission, had the main goals of evaluating the energy consumption and to identify the best available practices to improve energy efficiency in key agro-food sectors, such as the olive oil mills. A general analysis of energy consumptions allowed identifying the partition between electrical and thermal energy (approximately 50%) and the production processes responsible for the higher energy consumptions, as being the in the mill and paste preparation and the phases separation. Some measures for reducing energy waste and for improving energy efficiency were identified and the impact was evaluated by using the TESLA tool developed by Circe and available at the TESLA website.
Resumo:
In this article we use an autoregressive fractionally integrated moving average approach to measure the degree of fractional integration of aggregate world CO2 emissions and its five components – coal, oil, gas, cement, and gas flaring. We find that all variables are stationary and mean reverting, but exhibit long-term memory. Our results suggest that both coal and oil combustion emissions have the weakest degree of long-range dependence, while emissions from gas and gas flaring have the strongest. With evidence of long memory, we conclude that transitory policy shocks are likely to have long-lasting effects, but not permanent effects. Accordingly, permanent effects on CO2 emissions require a more permanent policy stance. In this context, if one were to rely only on testing for stationarity and non-stationarity, one would likely conclude in favour of non-stationarity, and therefore that even transitory policy shocks
Resumo:
ABSTRACT. The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.
Antimicrobial activity of essential oil from some Verbenaceae and Asteraceae from Brazilian Cerrado.
Resumo:
2016
Resumo:
Concentrated diet based on rice bran 69%, coconut meal 30%, urea 1% and field grass (fg), parsial defaunation agent Hibiscus rosasinensis (Hr) and coconut oil (Co) was used in propotion 37,5% fg + 2,5% Hr; 35% fg + 5% Hr; 37,5% fg + 2,5% Co and 35% + 5% Co. the feed of concentrate and feed grass 60 : 40 % are evaluated in vitro for dry matter degradability (DMD), organic matter degradability (OMD) and number of protozoa (NP). Variance analysis and orthogonal contrast was applied according to Steel and Torrie (1981). The result show that defaunation agent Hr and Co 2,5% and 5% increased (P< 0.01) DMD in the order 60.20; 59.40; 56.60 and 55.60 respectively, compare with no defaunation agent (54,60%). It also increased OMD 62.20%; 60.40; 58.40 and 57.20% compare with no agent (56.40%). While number of protozoa decreased (P< 0.01) 2.456; 2.316; 2.396 and 2.286 x 104/ml rumen liquid compare with no defaunation agent (2.564 x 104/ml rumen liquid). (Animal Production 2(2): 53-59 (2000)Â Key words : Hibiscus rosasinensis, digestibility, and number of protozoa
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.