975 resultados para n(g) nitroarginine methyl ester


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O bloqueio parcial das rotas onde atuam os herbicidas, com uso de baixas doses, pode ter implicações importantes, como a alteração do balanço de processos metabólicos nas plantas. Assim, foi conduzido no ano agrícola 2006/2007 um experimento em cana-soca de segundo corte na Fazenda Jurema, pertencente ao grupo COSAN, município de Barra Bonita-SP, para verificar os efeitos do glyphosate e do sulfumeturon-methyl, em subdoses, no comportamento fisiológico da cana-de-açúcar pelos níveis de clorofila e carotenoides. Os tratamentos constituíram-se da aplicação de dois herbicidas: sulfumeturon-methyl (Curavial 360 e.a. kg-1) e glyphosate (Roundup 480 i.a. kg-1), isolados e em misturas, em diferentes doses, e um tratamento controle, sem a aplicação dos herbicidas. As doses utilizadas foram: glyphosate 200 mL p.c. ha-1; glyphosate 400 mL p.c. ha -1; glyphosate 200 mL p.c. ha -1 + 10 g p.c. ha-1 de sulfumeturon-methyl; glyphosate 150 mL p.c. ha -1 + 12 g p.c. ha -1 de sulfumeturon-methyl; e sulfumeturon-methyl 20 g p.c. ha -1. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. As avaliações foram realizadas 15 e 30 dias após o plantio (DAP) e 30, 60, 90, 120, 150 e 180 dias após a colheita (DAC). As folhas foram cortadas padronizando-se o mesmo peso e área foliar. Para determinação do conteúdo de clorofila e carotenoides, amostras de 0,2 g de tecido foliar fresco foram preparadas e os extratos filtrados, sendo efetuadas leituras em espectrofotômetro (663 e 645 nm para clorofilas a e b, respectivamente). A aplicação de glyphosate e sulfumeturon-methyl nas maiores doses interferiu no conteúdo de carotenoides quando estes foram comparados com a testemunha. A maior dose de glyphosate diminuiu significativamente o conteúdo de clorofilas e carotenoides na cana-de-açúcar, porém esse resultado não se manteve quando a dose foi reduzida para 200 mL p.c. ha-1 . Os teores de clorofila foram inversamente proporcionais aos níveis Fe. A aplicação de sulfumeturon-methyl não interferiu nos teores de clorofila, no entanto os níveis de carotenoides se mostraram mais sensíveis e seus teores reduzidos. As alterações observadas nos níveis de clorofilas e carotenoides pela aplicação dos produtos podem afetar de maneira distinta o metabolismo da fotossíntese pela absorção e/ou conversão de energia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ALS-inhibiting herbicides, especially metsulfuron-methyl, are widely used for weed control, mainly wheat and barley in southern Brazil. Raphanus raphanistrum is a major weed of winter crops. However, in recent years, R.raphanistrum, after being treated with metsulfuron, has shown no symptoms of toxicity, possibly due to herbicide resistance. Aiming to evaluate the existence of R.raphanistrum biotypes resistant to metsulfuron, an experiment was conducted in a greenhouse, in a completely randomized design with four replications. The plots consisted of pots with six plants. The treatments consisted of the interaction of resistant R. raphanistrum (biotype R) and susceptible R. raphanistrum (biotypes S) with ten doses of the herbicide (0.0; 0.6; 1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 76.8 and 153.6 g i.a. ha-1). The application of the test herbicides occurred when the crop was at the stage of 3 to 4 true leaves. The variables analyzed were control and dry matter accumulation. Statistical analysis of dose-response curves was performed by non linear regression. Biotype S was susceptible to the herbicide even at doses below the recommended. Biotype R was insensitive to the herbicide obtaining values of resistance factor (F) higher than 85. The dose-response curve confirmed the existence of R. raphanistrum biotypes with high level of resistance to metsulfuron-methyl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trinexapac-ethyl and sulfometuron-methyl are the most widely used ripeners in sugarcane. The application is performed by airborne spraying. Thus, if weather conditions are unfavorable, spray drift to neighboring areas may occur. The objective of this study was to assess the selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl, used as sugarcane ripeners, to eucalyptus (Eucalyptus urograndis) young plants. The experiment was installed in an eucalyptus commercial yield area, in the municipality of Tambaú, state of São Paulo, Brazil, and arranged in a 2 x 8 factorial design in randomized blocks with four replications. The treatments studied were trinexapac-ethyl and sulfometuron-methyl, sprayed in eight doses, 0; 1.0; 2.5; 5.0; 10; 25; 50 and 100% of the dose used in sugarcane as ripeners (200 g ha-1 of trinexapac-ethyl and 15 g ha-1 of sulfometuron-methyl). Chemical ripeners were applied on eucalyptus plants with 48 cm in height on average; 10.1 branches; 4.5 mm of stem diameter and 44.3 cm of crown diameter, at 46 days after seeding. Trinexapac-ethyl was selective to eucalyptus and stimulated crown diameter growth. At higher doses, sulfometuron-methyl promoted severe noticeable injuries in eucalyptus plants, such as apical bud death. However, during the assessment period the plants recovered and the visual symptoms of phytotoxicity and growth alterations were not observed at 60 days after application. The plant growth regulators trinexapac-ethyl and sulfometuron-methyl were selective to eucalyptus young plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginkgo biloba extract EGb 761 has been reported to have therapeutic effects which have been attributed to anti-oxidant and free radical-scavenging activities, including a direct action on nitric oxide production. L G-nitro-arginine (L-NOARG), a nitric oxide synthase inhibitor, and haloperidol, a drug that blocks dopamine receptors, are both known to induce catalepsy in rodents. Nitric oxide has been shown to influence dopaminergic transmission in the striatum. The purpose of the present study was to evaluate the effect of the extract obtained from leaves of Ginkgo biloba tree EGb 761 on catalepsy induced by haloperidol or by L-NOARG. Albino Swiss mice (35-45 g, N = 8-12) received by gavage a single or repeated oral dose (twice a day for 4 days) of EGb 761 followed by ip injection of haloperidol or L-NOARG. After the treatments, the animals were submitted to behavioral evaluation using the catalepsy test. Acute treatment with 80 mg/kg EGb did not modify the catalepsy induced by L-NOARG but, the dose of 40 mg/kg significantly enhanced haloperidol-induced catalepsy measured at the 10th min of the test. After repeated treatment with 80 mg/kg EGb 761, a significant increase in the cataleptic effect produced by both haloperidol and L-NOARG was observed. These data show that repeated EGb 761 administration increases the effects of drugs that modify motor behavior in mice. Since the catalepsy test has predictive value regarding extrapyramidal effects, the possibility of pharmacological interactions between haloperidol and Ginkgo biloba extracts should be further investigated in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed that intracerebroventricular (icv) injection of selective N-methyl-D-aspartic acid (NMDA)-type glutamatergic receptor antagonists inhibits lordosis in ovariectomized (OVX), estrogen-primed rats receiving progesterone or luteinizing hormone-releasing hormone (LHRH). When NMDA was injected into OVX estrogen-primed rats, it induced a significant increase in lordosis. The interaction between LHRH and glutamate was previously explored by us and another groups. The noradrenergic systems have a functional role in the regulation of LHRH release. The purpose of the present study was to explore the interaction between glutamatergic and noradrenergic transmission. The action of prazosin, an alpha1- and alpha2b-noradrenergic antagonist, was studied here by injecting it icv (1.75 and 3.5 µg/6 µL) prior to NMDA administration (1 µg/2 µL) in OVX estrogen-primed Sprague-Dawley rats (240-270 g). Rats manually restrained were injected over a period of 2 min, and tested 1.5 h later. The enhancing effect induced by NMDA on the lordosis/mount ratio at high doses (67.06 ± 3.28, N = 28) when compared to saline controls (6 and 2 µL, 16.59 ± 3.20, N = 27) was abolished by prazosin administration (17.04 ± 5.52, N = 17, and 9.33 ± 3.21, N = 20, P < 0.001 for both doses). Plasma LH levels decreased significantly only with the higher dose of prazosin (1.99 ± 0.24 ng/mL, N = 18, compared to saline-NMDA effect, 5.96 ± 2.01 ng/mL, N = 13, P < 0.05). Behavioral effects seem to be more sensitive to the alpha-blockade than hormonal effects. These findings strongly suggest that the facilitatory effects of NMDA on both lordosis and LH secretion in this model are mediated by alpha-noradrenergic transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravesical chemotherapy is an important part of the treatment for superficial bladder cancer. However, the response to it is limited and its side effects are extensive. Functional single-walled carbon nanotubes (SWNT) have shown promise for tumor-targeted accumulation and low toxicity. In the present study, we performed in vivo and in vitro investigations to determine whether SWNT-based drug delivery could induce high tumor depression in rat bladder cancer and could decrease the side effects of pirarubicin (tetrahydropyranyl-adriamycin, THP). We modified SWNT with phospholipid-branched polyethylene glycol and constructed an SWNT-THP conjugate via a cleavable ester bond. The cytotoxicity of SWNT-THP against the human bladder cancer cell line BIU-87 was evaluated in vitro. Rat bladder cancer in situ models constructed by N-methyl-N-nitrosourea intravesical installation (1 g/L, 2 mg/rat once every 2 weeks for 8 weeks) were used for in vivo evaluation of the cytotoxicity of SWNT and SWNT-THP. Specific side effects in the THP group including urinary frequency (N = 12), macroscopic hematuria (N = 1), and vomiting (N = 7) were identified; however, no side effects were observed with SWNT-THP treatment. Flow cytometry was used to assess the cytotoxicity in vitro and in vivo. Results showed that SWNT alone did not yield significant tumor depression compared to saline (1.74 ± 0.56 and 1.23 ± 0.42%) in vitro. SWNT-THP exhibited higher tumor depression than THP-saline in vitro (74.35 ± 2.56 and 51.24 ± 1.45%) and in vivo (52.46 ± 2.41 and 96.85 ± 0.85%). The present findings indicate that SWNT delivery of THP for the treatment of bladder cancer leads to minimal side effects without loss of therapeutic efficacy. Therefore, this nanotechnology may play a crucial role in the improvement of intravesical treatment of bladder cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetics and product studies of the decompositions of allyl-t-butyl peroxide and 3-hydroperoxy- l-propene (allyl hydroperoxide ) in tolune were investigated. Decompositions of allyl-t-butyl peroxide in toluene at 130-1600 followed first order kinetics with an activation energy of 32.8 K.cals/mol and a log A factor of 13.65. The rates of decomposition were lowered in presence of the radical trap~methyl styrene. By the radical trap method, the induced decomposition at 1300 is shown to be 12.5%. From the yield of 4-phenyl-l,2- epoxy butane the major path of induced decomposition is shown to be via an addition mechanism. On the other hand, di-t-butYl peroxyoxalate induced decomposition of this peroxide at 600 proceeded by an abstraction mechanism. Induced decomposition of peroxides and hydroperoxides containing the allyl system is proposed to occur mainly through an addition mechanism at these higher temperatures. Allyl hydroperoxide in toluene at 165-1850 decomposes following 3/2 order kinetics with an Ea of 30.2 K.cals per mole and log A of 10.6. Enormous production of radicals through chain branching may explain these relatively low values of E and log A. The complexity of the reaction is indicated a by the formation of various products of the decomposition. A study of the radical attack of the hydro peroxide at lower temperatures is suggested as a further work to throw more light on the nature of decomposition of this hydroperoxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and coldacclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warmacclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamatesensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of MbCD are unrelated to cholesterol chelation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s