998 resultados para multicomponent Povarov reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of H-2 via photocatalytic water splitting reaction has attracted a great attention as a clean and renewable energy for next generation. Despite tremendous efforts, the present challenge for materials scientist is to develop highly active photo catalysts for splitting of water at low cost. This article reports the synthesis of TiO2-reduced graphene oxide hybrid nanomaterials through ionothermal method using functionalized ionic liquid for the enhanced hydrogen generation via water splitting reaction. The structural and morphological properties of the samples were investigated by XFtD, Raman spectroscopy, TG-DTA, UV-vis spectroscopy and TEM. A substantial increase of H-2 evolution was observed for TiO2-reduced graphene oxide hybrid nanomaterials. This is due to the high migration efficiency of photo-induced electrons and the inhibition of charge carrier recombination due to the electronic interaction between TiO2 and reduced graphene oxide. i.e, reduced graphene oxide acts as an electron-acceptor which effectively hinders the electron hole pair recombination of TiO2. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrabutyl ammonium iodide (TBAI) catalyzed alpha-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished. We have shown that the CDC (cross dehydrogenative coupling) reactions of ketones with N-hydroxyimidates such as N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) lead to the corresponding oxygenated products in good to moderate yields. The application of this method has been demonstrated by transforming a few coupled products into synthetically useful intermediates and products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrically conducting, continuous films of different phases of palladium selenides are synthesized by the thermolysis of single source molecular precursors. The films are found to be adherent on flat substrates such as glass, indium tin oxide and glassy carbon and are stable under electrochemical conditions. They are electrocatalytically active and in particular, for hydrogen evolution reaction. Catalytic activities with low Tafel slopes of 50-60 mV per decade are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for acylation for heteroarenes under metal-free conditions has been described using NCS as an additive and TBHP as an oxidant. This method has been successfully employed in acylation of a variety of aldehyde with heteroarenes. The application of the method has been illustrated in synthesizing isoquinoline derived natural products. This strategy provides an efficient, mild and inexpensive method for acylation of heteroarenes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of a ditopic urea ``strut'' (L-1) with cis-(tmen)Pd(NO3)(2) yielded a 3+3] self-assembled molecular triangle (T)L-1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N',N'-tetrame-thylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)(2) in the above reaction with an equimolar mixture of Pd(NO3)(2) and a clip-type donor (L-2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties L-2 = 3,3'-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR. spectroscopy, and the structure was confirmed by X-ray crystallography. The P was employed as an effective hydrogen-bond-donor catalyst for Michael reactions of a series of water-insoluble nitro-olefins in an aqueous medium. The P showed better catalytic activity compared to the urea based ligand L-1 and the triangle T. Moreover, the confined nanospace of P in addition to large product outlet windows makes this 3D architecture a perfect molecular vessel to catalyze Diels-Alder reactions of 9-hydroxymethylanthracene with N-substituted maleimide in the aqueous medium. The present results demonstrate new observations on catalytic aqueous Diels-Alder and Michael reactions in heterogeneous fashion employing a discrete 3D architecture of Pd(II). The prism was recycled by simple filtration and reused several tithes without significant loss of activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When one starts to analyze the evolution of the interfacial reaction product layers between dissimilar materials it is often found out that as the number of interacting species grows, the complexity of the analysis increases extremely rapidly. It may even appear that the task is just too difficult to be completed. In this article we present the thermodynamic-kinetic method, which can be used to rationalize the evolution of interfacial reaction layers and bring back the physics to the analyses. The method is conceptually very simple. It combines energetics-what can happen-with kinetics-how fast things take place. Yet the method is flexible enough that it can utilize quantitative and qualitative data starting from the atomistic simulations up to the experiments carried out with bulk materials. Several examples about how to utilize this method in material scientific problems are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.