972 resultados para modeling tools
Resumo:
Finding an appropriate linking method to connect different dimensional element types in a single finite element model is a key issue in the multi-scale modeling. This paper presents a mixed dimensional coupling method using multi-point constraint equations derived by equating the work done on either side of interface connecting beam elements and shell elements for constructing a finite element multiscale model. A typical steel truss frame structure is selected as case example and the reduced scale specimen of this truss section is then studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details while the different analytical models are developed for numerical simulation. Comparison of dynamic and static response of the calculated results among different numerical models as well as the good agreement with those from experimental results indicates that the proposed multi-scale model is efficient and accurate.
Resumo:
Objective Although several validated nutritional screening tools have been developed to “triage” inpatients for malnutrition diagnosis and intervention, there continues to be debate in the literature as to which tool/tools clinicians should use in practice. This study compared the accuracy of seven validated screening tools in older medical inpatients against two validated nutritional assessment methods. Methods This was a prospective cohort study of medical inpatients at least 65 y old. Malnutrition screening was conducted using seven tools recommended in evidence-based guidelines. Nutritional status was assessed by an accredited practicing dietitian using the Subjective Global Assessment (SGA) and the Mini-Nutritional Assessment (MNA). Energy intake was observed on a single day during first week of hospitalization. Results In this sample of 134 participants (80 ± 8 y old, 50% women), there was fair agreement between the SGA and MNA (κ = 0.53), with MNA identifying more “at-risk” patients and the SGA better identifying existing malnutrition. Most tools were accurate in identifying patients with malnutrition as determined by the SGA, in particular the Malnutrition Screening Tool and the Nutritional Risk Screening 2002. The MNA Short Form was most accurate at identifying nutritional risk according to the MNA. No tool accurately predicted patients with inadequate energy intake in the hospital. Conclusion Because all tools generally performed well, clinicians should consider choosing a screening tool that best aligns with their chosen nutritional assessment and is easiest to implement in practice. This study confirmed the importance of rescreening and monitoring food intake to allow the early identification and prevention of nutritional decline in patients with a poor intake during hospitalization.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a governmental Shared Services provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrative this approach, we apply it in the real-life case of an European airport and show how this information can be leveraged in the re-design of “green” busi-ness processes.
Resumo:
The reliability of urban passenger trains is a critical performance measure for passenger satisfaction and ultimately market share. A delay to one train in a peak period can have a severe effect on the schedule adherence of other trains. This paper presents an analytically based model to quantify the expected positive delay for individual passenger trains and track links in an urban rail network. The model specifically addresses direct delay to trains, knock-on delays to other trains, and delays at scheduled connections. A solution to the resultant system of equations is found using an iterative refinement algorithm. Model validation, which is carried out using a real-life suburban train network consisting of 157 trains, shows the model estimates to be on average within 8% of those obtained from a large scale simulation. Also discussed, is the application of the model to assess the consequences of increased scheduled slack time as well as investment strategies designed to reduce delay.
Resumo:
Sustainability issues in built environment have attracted an increasingly level of attention from both the general public and the industry. As a result, a number of green building assessment tools have been developed such as the Leadership in Energy and Environmental Design (LEED) and the BRE Environmental Assessment Method (BREEAM), etc. This paper critically reviewed the assessment tools developed in Australian context, i.e. the Green Star rating tools developed by the Green Building Council of Australia. A particular focus is given to the recent developments of these assessment tools. The results showed that the office buildings take the biggest share of Green Star rated buildings. Similarly, sustainable building assessments seem to be more performance oriented which focuses on the operation stage of buildings. In addition, stakeholder engagement during the decision making process is encouraged. These findings provide useful references to the development of next generation of sustainable building assessment tools.
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.
Resumo:
Software development and Web site development techniques have evolved significantly over the past 20 years. The relatively young Web Application development area has borrowed heavily from traditional software development methodologies primarily due to the similarities in areas of data persistence and User Interface (UI) design. Recent developments in this area propose a new Web Modeling Language (WebML) to facilitate the nuances specific to Web development. WebML is one of a number of implementations designed to enable modeling of web site interaction flows while being extendable to accommodate new features in Web site development into the future. Our research aims to extend WebML with a focus on stigmergy which is a biological term originally used to describe coordination between insects. We see design features in existing Web sites that mimic stigmergic mechanisms as part of the UI. We believe that we can synthesize and embed stigmergy in Web 2.0 sites. This paper focuses on the sub-topic of site UI design and stigmergic mechanism designs required to achieve this.
Resumo:
The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.
Resumo:
This paper discusses first year students’ responses and outcomes to the integration of digital technologies in their second semester foundational visualisation class; ‘Visualisation II’. As the second class in the Visualisation series, previous analogue knowledge taught in ‘Visualisation I’ is compounded with new digital technologies establishing the introduction to a myriad of hybrid visualisation tools and techniques for design exploration and design artefact. This research examines the differentiation between analogue and digital design, common precedents of the two, and reflects upon the environment and class structure with the learning experiences and confidence of surveyed participants.
Resumo:
Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.
Resumo:
In recent years there has been a large emphasis placed on the need to use Learning Management Systems (LMS) in the field of higher education, with many universities mandating their use. An important aspect of these systems is their ability to offer collaboration tools to build a community of learners. This paper reports on a study of the effectiveness of an LMS (Blackboard©) in a higher education setting and whether both lecturers and students voluntarily use collaborative tools for teaching and learning. Interviews were conducted with participants (N=67) from the faculties of Science and Technology, Business, Health and Law. Results from this study indicated that participants often use Blackboard© as an online repository of learning materials and that the collaboration tools of Blackboard© are often not utilised. The study also found that several factors have inhibited the use and uptake of the collaboration tools within Blackboard©. These have included structure and user experience, pedagogical practice, response time and a preference for other tools.
Resumo:
The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.