976 resultados para metal(II) complexes
Resumo:
The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH(3))(4)(Ist)SO(4)](+) to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH(3))(4)(Ist)SO(4)](+) complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sensitized photolysis of [Ru(NH3)(6)](2+) by the organic dye rhodamine B and biacetyl was studied under conditions in which only the sensitizer absorbs. The reaction products resulting from ammonia aquation and Ru(II) to Ru(III) oxidation are the same for direct and sensitized photolysis. The energy transfer rate constant, calculated from the fluorescence quenching of rhodamine B, is similar to that estimated from the limiting quantum yield of the photosensitized photoaquation of the complex. Both reactions originate from a common reactive low-lying ligand-field (LF) state, which is also responsible for the direct photolysis reactions. This state, which leads directly to photoaquation, seems to have a certain charge transfer to solvent (CTTS) character, which is responsible for the photo-oxidation products. Sensitization is effective with rhodamine B (17 450 cm(-1)) and biacetyl (19 000 cm(-1)), whereas no reaction is observed with neutral red (16 900 cm(-1)). These results show that the excited state responsible for the photochemical reactions lies in the energy range between 16 900 cm(-1) and 17 700 cm(-1) and possesses spin-orbit character.
Resumo:
Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Synthesis, characterization and thermal behavior of four compounds that have the general formula [Cu{Pd(CN)(4)}(L)(x)](n), in which en = 1,2-diaminoethane and pn = 1,3-diaminopropane (L = en, x = 1 (I); L = pn, x = 1 (II); L = en, x = 2 (III); L = pn, x = 2 (IV)) were described in this work. The complexes were studied by elemental analysis, infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were characterized by X-ray powder diffraction and found as a mixture of CuO and PdO. The stoichiometry of the compounds was established via thermogravimetric and elemental analyses and their structures were proposed as coordination polymers based on their infrared spectra. The following thermal stability sequence was found: IV < I=II < III.
Resumo:
Ruthenium(II) complexes with general formula [RuCl3(NO)(P-P)] were obtained in the solid state, where P-P = PPh(2)(CH2)(n)PPh(2) (n = 1-3) and PPh(2)-CH = CH-PPh(2). The P-31 NMR spectra of these compounds measured in CH2Cl2 showed only singlets, consistent with a fac configuration containing two equivalent phosphorus atoms, However the X-ray diffraction data show that the [RuCl3(NO){PPh(2)(CH2)(3)PPh(2)}] complex crystallizes in a met configuration, where one of the phosphorus atoms is trans to the NO group, in a slightly distorted octahedral geometry. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Tin(II) complexes with 8-hydroxyquinolinate in solid state have been obtained by adding aqueous ammonium to a solution containing stannous chloride and 8-hydroxiquinoline in medium of HCl and acetone up to pH 5 and 9, respectively. The products obtained show the same composition, Sn(C9H6ON)(2); however there are some differences regarding both the thermal behaviour in an oxidant atmosphere and morphology. These products were characterised by elemental and complexometric analysis, TG and DTA curves, infrared and X-ray diffractometry. TG curves show, above 448 K, the partial oxidation on air atmosphere of Sn(II) complexes to Sn(IV) complexes, SnO(C9H6ON)(2). This behaviour does not depend only on pH in which the compounds were obtained but also on the heating rate in TG curves. Sn(II) complexes volatilise almost completely on nitrogen atmosphere and partially on air atmosphere depending on the oxidation degree of the compound.
Resumo:
Mononuclear pyrazolyl Pd(II) complexes of the type [PdX2(phmPz)(2)] (X = Cl-, N-3(-)) have been prepared. The 1-phenyl-3-methylpyrazole displaces acetonitrile from [PdCl2(CH3CN)(2)] to form [PdCl2(PhMPz)(2)] (phmPz = 1-phenyl-3-methylpyrazole) (1). [Pd(N-3)(2)(PhmPz)(2)] (2) could be obtained by metathesis from [PdCl2(CH3CN)(2)] or by substitution of the chloride in (1) by the azide ion. Both complexes were characterized by elemental analysis, infrared spectroscopy, H-1 and C-13 NMR and by single crystal X-ray diffraction. The coordination geometry around Pd(II) in these complexes is nearly square-planar, with the ligands in a trans configuration.
Resumo:
This article supplies a review on the chemistry of cyclometallated compounds. Emphasis is given to those formed by cyclometallation reactions. In this class of complexes, called organometallic intramolecular-coordination compounds, a special attention is given to the reactivity of cyclometallated of palladium(II) due to their use in important chemical processes. Metal-carbon bonds in these palladium(II) complexes can undergo a large variety of insertion reactions and they offer a potentially important sequence in organic synthetic methodology,homogeneous catalysis and liquid crystals manufacturing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Four new mononuclear Pd(II) complexes of the type [PdX2(tdmPz)] {X = Cl- (1); Br- (2); I- (3); SCN- (4); tdmPz = 1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized by elemental analysis, IR spectroscopy, H-1 and C-13{H-1}-NMR experiments. The thermal behavior of the complexes 1-4 has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 3 < 4 a parts per thousand 2 < 1. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)