975 resultados para markov chains monte carlo methods
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
We present, pedagogically, the Bayesian approach to composed error models under alternative, hierarchical characterizations; demonstrate, briefly, the Bayesian approach to model comparison using recent advances in Markov Chain Monte Carlo (MCMC) methods; and illustrate, empirically, the value of these techniques to natural resource economics and coastal fisheries management, in particular. The Bayesian approach to fisheries efficiency analysis is interesting for at least three reasons. First, it is a robust and highly flexible alternative to commonly applied, frequentist procedures, which dominate the literature. Second,the Bayesian approach is extremely simple to implement, requiring only a modest addition to most natural-resource economist tool-kits. Third, despite its attractions, applications of Bayesian methodology in coastal fisheries management are few.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods— Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
The Homeric epics are among the greatest masterpieces of literature, but when they were produced is not known with certainty. Here we apply evolutionary-linguistic phylogenetic statistical methods to differences in Homeric, Modern Greek and ancient Hittite vocabulary items to estimate a date of approximately 710–760 BCE for these great works. Our analysis compared a common set of vocabulary items among the three pairs of languages, recording for each item whether the words in the two languages were cognate – derived from a shared ancestral word – or not. We then used a likelihood-based Markov chain Monte Carlo procedure to estimate the most probable times in years separating these languages given the percentage of words they shared, combined with knowledge of the rates at which different words change. Our date for the epics is in close agreement with historians' and classicists' beliefs derived from historical and archaeological sources.
Resumo:
The dependency of the blood oxygenation level dependent (BOLD) signal on underlying hemodynamics is not well understood. Building a forward biophysical model of this relationship is important for the quantitative estimation of the hemodynamic changes and neural activity underlying functional magnetic resonance imaging (fMRI) signals. We have developed a general model of the BOLD signal which can model both intra- and extravascular signals for an arbitrary tissue model across a wide range of imaging parameters. The model of the BOLD signal was instantiated as a look-up-table (LuT), and was verified against concurrent fMRI and optical imaging measurements of activation induced hemodynamics. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc.
Resumo:
Monte Carlo field-theoretic simulations (MCFTS) are performed on melts of symmetric diblock copolymer for invariant polymerization indexes extending down to experimentally relevant values of N̅ ∼ 10^4. The simulations are performed with a fluctuating composition field, W_−(r), and a pressure field, W_+(r), that follows the saddle-point approximation. Our study focuses on the disordered-state structure function, S(k), and the order−disorder transition (ODT). Although shortwavelength fluctuations cause an ultraviolet (UV) divergence in three dimensions, this is readily compensated for with the use of an effective Flory−Huggins interaction parameter, χ_e. The resulting S(k) matches the predictions of renormalized one-loop (ROL) calculations over the full range of χ_eN and N̅ examined in our study, and agrees well with Fredrickson−Helfand (F−H) theory near the ODT. Consistent with the F−H theory, the ODT is discontinuous for finite N̅ and the shift in (χ_eN)_ODT follows the predicted N̅^−1/3 scaling over our range of N̅.
Resumo:
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.
Resumo:
We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.
Resumo:
In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.
Resumo:
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
Resumo:
In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.
Resumo:
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.