925 resultados para light-dark cycle
Resumo:
Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.
Resumo:
The rule of light on the timing of maturation and spawning in tropical and subtropical regions is not clear well, because the reproductive cycle in these systems is lunar synchronized. In this study, thus, the effects of different light regimes were investigated on maturational progress of whitespotted rabbitfish, Siganus sutor, the commercial species in Persian Gulf and Oman Sea. During prespawning season, 50 adult fish were randomly divided into ten 300-l tanks (n=5). The fish in control tank received indoor light condition and the fish in each other tanks were exposed to nine different combinations of photoperiod (8L: 16D, 12L: 12D, 16L: 8D) and light intensity (1000, 2000, 3000 lux). After 60 days, GSI and HSI values, serum levels of estradiol (E2), testosterone (T), 17-α hydroxyprogestrone (OHP), calcium (Ca2+) and gonad histology were evaluated for females and males. In females the GSI mean values of exposed fish increased in comparison with control except for fish were kept under 8L, 2000 lux (tank 8). These differences were significant only for fishes in tank 7 (8L, 3000 lux). In the cases of HSI, the results were converse, so that, the most of thanks showed significant decreasing than fishes reared under indoor condition. Morphology and histology study of Ovaries showed three developmental phases including 3, 4 and chiefly 5 that were parallel with GSI values. Fortheremore the serum levels of E2 was recorded between 0.54-15.8 ng/ml in different fish and their mean values were lower than control in all treatmants (P> 0.05). In males, the similar results were obtained. The GSI and HSI mean values in experimental regimes compared with control were upper and lower, respectively, except for fishes were reared in tank 1 (16L, 3000 lux). Testes histology of fishes were reared under different regimes showed signs of stage 5, since no blood vessels observed and thick milt exuded on slight pressure. The mean values of testosterone consentration in fishes were kept in tanks 1 and 6 (12L, 1000 lux) were higher and in other ones were lower than control group. It is also noted that the OHP and Ca2+ had diverse results including increasing and decreasing mean values than control. So, these factors contrary to E2 and T were not suitable to evaluation of maturity in both sexes. On the basis of ovarian structure in stage 5, oocyte development pattern in this species was group synchronous. So, increased mean of GSI versus decreased values of HSI, E2 and perhaps Ca2+ were the signs of improved maturation. But in males, reduced levels of T and similarity of testes morphology in all samples caused that GSI mean value was the only indicator for differentiating among treatments. These findings suggest that alternations were used in light regimes have been the reason of improved maturity in all treatments except fishes reared in tank 8. The ١٠٧ rule of light intensity on induction of maturity was cleared by comparision between fishes in tanks 4, 5, 6 and control group. Because day length was the same whereas fishes in tanks 4, 5 and 6 were exposed to increased light intensity compared with control. This fact verified by results was obtained from fishes in tanks 9 and especially 7, since photoperiod in this group was lower than control. So, higher intensity was considered as the reason of alternations. Contrasting with indoor condition, Induced maturity was also cleared for fishes were kept in tanks 1, 2 and 3, where both of light duration and intensity were increased. But, the rule of photoperiod was individually demonstrated when obtained results were compared with similar light intensities in other treatments. In conclusion, with comparison among different light regimes it is declared that siganids were kept under light condition of tank 2 including 16h light duration combined with 2000 lux intensity showed the best signs of sexual maturation in both sexes. On the basis of this study, setting up the spring light condition during prespawning season induces maturation in withspotted rabbitfish. This improvement not only by influence of photoperiod or light intensity, separately, but obtained through interaction between them. Thus, determination of threshold and resistance to light be recommended before exposure, although using proper regime during suitable time are necessary to achieve purposes considerably.
Resumo:
Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.
Resumo:
Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.
Resumo:
Increasing pressure on lowering vehicle exhaust emissions to meet stringent California and Federal 1993/1994 TLEV emission standards of 0.125 gpm NMOG, 3.4 gpm CO and 0.4 gpm NOx and future ULEV emission standards of 0.04 gpm NMOG, 1.7 gpm CO and 0.2 gpm NOx has focused specific attention on the cold start characteristics of the vehicle's emission system, especially the catalytic converter. From test data it is evident that the major portion of the total HC and CO emissions occur within the first two minutes of the driving cycle while the catalyst is heating up to operating temperature. The use of an electrically heated catalyst (EHC) has been proposed to alleviate this problem but the cost and weight penalties are high and the durability has yet to be fully demonstrated (1)*. This paper describes a method of reducing the light-off time of the catalytic converter to less than 20 seconds by means of an afterburner. The system uses exhaust gases from the engine calibrated to run rich and additional air injected into the exhaust gas stream to form a combustible mixture. The key feature concerns the method of making this combustible mixture ignitable within 2 seconds from starting the engine when the exhaust gases arriving at the afterburner are cold and essentially non-reacting. © Copyright 1992 Society of Automotive Engineers, Inc.
Resumo:
The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.
Resumo:
This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.
Resumo:
The proliferation potential of the present light water reactor (LWR) fuel cycle is related primarily to the quantity and the quality of the residual Pu contained in the spent-fuel stockpile, although other potentially “weapons usable” materials are also a concern. Thorium-based nuclear fuel produces much smaller amounts of Pu in comparison with standard LWR fuel, and consequently, it is more proliferation resistant than conventional slightly enriched all-U fuel; the long-term toxicity of the spent-fuel stockpile is also reduced
Resumo:
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5 degrees C) in the dark but rapidly losses viability when exposed to chill in the light (100 mu mol photons m(-2) s(-1)). Preconditioning at a low temperature (15 degrees C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of alpha-tocopherol after exposure to chill-light stress. Mutants unable to synthesize alpha-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P-petE controlled the level of et-tocopherol and ACLT. We conclude that alpha-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of a-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.
Resumo:
During the parasite fauna investigation within 2004 and 2005, the freshwater fish trypanosomes were isolated from the blood of dark sleeper (Odontobutis obscura Temminck and Schlegel) and snakehead fish (Ophiocephalus argus Cantor) from Niushan Lake, Hubei Province, China. Blood trypomastigotes were used for light microscopy investigations. The detailed descriptions of three morphological groups of the genus Trypanosoma: Trypanosoma sp. I and Trypanosoma sp. II found in blood of O. obscura, and Trypanosoma sp. III found in blood of O. argus were provided. Morphological features and host species show Trypanosoma sp. III belong to Trypanosoma ophiocephali Chen 1964, an incompletely described species. Infection with trypanosomes of O. obscura was recorded for the first time. According to the size and appearance, the trypanosomes in O. obscura were also tentatively identified as T. ophiocephali Chen 1964.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.
Resumo:
PS II photochemical efficiency (F-v/F-m) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. F-v/F-m was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 mu mol photon m(2) s(-1)) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density.
Resumo:
Metamorphic InGaAs quantum well structures grown on GaAs reveal strong light emission at 1.3-1.6 mu m, smooth surface with an average roughness below 2 nm. and good rectifying I-V characteristics. Dark line defects are found in the QW Post growth thermal annealing further improves the luminescence efficiency but does not remove those dark line defects. Some challenges of epitaxial growth using this method for laser applications are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Fabrication of Ge nano-dot heterojunction phototransistors for improved light detection at 1.55 mu m
Resumo:
Heterojunction phototransistors (HPTs) with several Ge/Si nano-dot layers as the absorption region are fabricated to obtain improved light detectivity at 1.55 mu m. The HPT detectors are of n-p-n type with ten layers of Ge(8ML)/Si(45nm) incorporated in the base-collector junction and are grown by an ultrahigh-vacuum chemical-vapor deposition system. The detectors are operated with normal incidence. Because of the good quality of the grown material and fabrication process, the dark current is only 0.71pA/mu m(2) under 5 V bias and the break-down voltage is over 20 V. Compared to the positive-intrinsic-negative (PIN) reference detector with the same absorption layer, the responsivity is improved over 17 times for normal incidence at 1.55 mu m.
Resumo:
Three different types of GaAs metal-semiconductor field effect transistors (MESFET) by employing ion implantation, molecular beam epitaxy (MBE) and low-temperature MBE (LT MBE) techniques respectively were fabricated and studied in detail. The backgating (sidegating) measurement in the dark and in the light were carried out. For the LT MBE-GaAs buffered MESFETs, the output resistance R(d) and the peak transconductance g(m) were measured to be above 50 k Omega and 140 mS/mm, respectively, and the backgating and light sensitivity were eliminated. A theoretical model describing the light sensitivity in these kinds of devices is given. and good agreement with experimental data is reached.