826 resultados para ligand-based virtual screening
Resumo:
Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.
Resumo:
The Texas Department of Transportation (TxDOT) is concerned about the widening gap between preservation needs and available funding. Funding levels are not adequate to meet the preservation needs of the roadway network; therefore projects listed in the 4-Year Pavement Management Plan must be ranked to determine which projects should be funded now and which can be postponed until a later year. Currently, each district uses locally developed methods to prioritize projects. These ranking methods have relied on less formal qualitative assessments based on engineers’ subjective judgment. It is important for TxDOT to have a 4-Year Pavement Management Plan that uses a transparent, rational project ranking process. The objective of this study is to develop a conceptual framework that describes the development of the 4-Year Pavement Management Plan. It can be largely divided into three Steps; 1) Network-Level project screening process, 2) Project-Level project ranking process, and 3) Economic Analysis. A rational pavement management procedure and a project ranking method accepted by districts and the TxDOT administration will maximize efficiency in budget allocations and will potentially help improve pavement condition. As a part of the implementation of the 4-Year Pavement Management Plan, the Network-Level Project Screening (NLPS) tool including the candidate project identification algorithm and the preliminary project ranking matrix was developed. The NLPS has been used by the Austin District Pavement Engineer (DPE) to evaluate PMIS (Pavement Management Information System) data and to prepare a preliminary list of candidate projects for further evaluation.
Resumo:
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
Resumo:
In this study, we explore motivation in collocated and virtual project teams. The literature on motivation in a project set.,ting reveals that motivation is closely linked to team performance. Based on this literature, we propose a set., of variables related to the three dimensions of ‘Nature of work’, ‘Rewards’, and ‘Communication’. Thirteen original variables in a sample size of 66 collocated and 66 virtual respondents are investigated using one tail t test and principal component analysis. We find that there are minimal differences between the two groups with respect to the above mentioned three dimensions. (p= .06; t=1.71). Further, a principal component analysis of the combined sample of collocated and virtual project environments reveals two factors- ‘Internal Motivating Factor’ related to work and work environment, and ‘External Motivating Factor’ related to the financial and non-financial rewards that explain 59.8% of the variance and comprehensively characterize motivation in collocated and virtual project environments. A ‘sense check’ of our interpretation of the results shows conformity with the theory and existing practice of project organization
Resumo:
Prefabricated construction is regarded by many as an effective and efficient approach to improving construction processes and productivity, ensuring construction quality and reducing time and cost in the construction industry. However, many problems occur with this approach in practice, including higher risk levels and cost or time overruns. In order to solve such problems, it is proposed that the IKEA model of the manufacturing industry and VP technology are introduced into a prefabricated construction process. The concept of the IKEA model is identified in detail and VP technology is briefly introduced. In conjunction with VP technology, the applications of the IKEA model are presented in detail, i.e. design optimization, production optimization and installation optimization. Furthermore, through a case study of a prefabricated hotel project in Hong Kong, it is shown that the VP-based IKEA model can improve the efficiency and safety of prefabricated construction as well as reducing cost and time.
Resumo:
In the cancer research field, most in vitro studies still rely on two-dimensional (2D) cultures. However, the trend is rapidly shifting towards using a three-dimensional (3D) culture system. This is because 3D models better recapitulate the microenvironment of cells, and therefore, yield cellular and molecular responses that more accurately describe the pathophysiology of cancer. By adopting technology platforms established by the tissue engineering discipline, it is now possible to grow cancer cells in extracellular matrix (ECM)-like environments and dictate the biophysical and biochemical properties of the matrix. In addition, 3D models can be modified to recapitulate different stages of cancer progression for instance from the initial development of tumor to metastasis. Inevitably, to recapitulate a heterotypic condition, comprising more than one cell type, it requires a more complex 3D model. To date, 3D models that are available for studying the prostate cancer (CaP)-bone interactions are still lacking. Therefore, the aim of this study is to establish a co-culture model that allows investigation of direct and indirect CaP-bone interactions. Prior to that, 3D polyethylene glycol (PEG)-based hydrogel cultures for CaP cells were first developed and growth conditions were optimised. Characterization of the 3D hydrogel cultures show that LNCaP cells form a multicellular mass that resembles avascular tumor. In comparison to 2D cultures, besides the difference in cell morphology, the response of LNCaP cells to the androgen analogue (R1881) stimulation is different compared to the cells in 2D cultures. This discrepancy between 2D and 3D cultures is likely associated with the cell-cell contact, density and ligand-receptor interactions. Following the 3D monoculture study, a 3D direct co-culture model of CaP cells and the human tissue engineered bone (hTEBC) construct was developed. Interactions between the CaP cells and human osteoblasts (hOBs) resulted in elevation of Matrix Metalloproteinase 9 (MMP9) for PC-3 cells and Prostate Specific Antigen (PSA) for LNCaP cells. To further investigate the paracrine interaction of CaP cells and (hOBs), a 3D indirect co-culture model was developed, where LNCaP cells embedded within PEG hydrogels were co-cultured with hTEBC. It was found that the cellular changes observed reflect the early event of CaP colonizing the bone site. In the absence of androgens, interestingly, up-regulation of PSA and other kallikreins is also detected in the co-culture compared to the LNCaP monoculture. This non androgenic stimulation could be triggered by the soluble factors secreted by the hOB such as Interleukin-6. There are also decrease in alkaline phosphatase (ALP) activity and down-regulation of genes of the hOB when co-cultured with LNCaP cells that have not been previously described. These genes include transforming growth factor β1 (TGFβ1), osteocalcin and Vimentin. However, no changes to epithelial markers (e.g E-cadherin, Cytokeratin 8) were observed in both cell types from the co-culture. Some of these intriguing changes observed in the co-cultures that had not been previously described have enriched the basic knowledge of the CaP cell-bone interaction. From this study, we have shown evidence of the feasibility and versatility of our established 3D models. These models can be adapted to test various hypotheses for studies pertaining to underlying mechanisms of bone metastasis and could provide a vehicle for anticancer drug screening purposes in the future.
Resumo:
While the studio environment has been promoted as an ideal educational setting for project-based disciplines associated with the art and design, few qualitative studies have been undertaken in a comprehensive way, with even fewer giving emphasis to the teachers and students and how they feel about changing their environment. This situation is problematic given the changes and challenges facing higher education, including those associated with new technologies such as online learning. In response, this paper describes a comparative study employing grounded theory to identify and describe teachers’ and students’ perceptions of the physical design studio (PDS) as well as the virtual design studio (VDS) of architectural students in an Australian university. The findings give significance to aspects of design education activities and their role in the development of integrated hybrid learning environments.
Resumo:
Background Cancer can be a distressing experience for cancer patients and carers, impacting on psychological, social, physical and spiritual functioning. However, health professionals often fail to detect distress in their patients due to time constraints and a lack of experience. Also, with the focus on the patient, carer needs are often overlooked. This study investigated the acceptability of brief distress screening with the Distress Thermometer (DT) and Problem List (PL) to operators of a community-based telephone helpline, as well as to cancer patients and carers calling the service. Methods Operators (n = 18) monitored usage of the DT and PL with callers (cancer patients/carers, >18 years, and English-speaking) from September-December 2006 (n = 666). The DT is a single item, 11-point scale to rate level of distress. The associated PL identifies the cause of distress. Results The DT and PL were used on 90% of eligible callers, most providing valid responses. Benefits included having an objective, structured and consistent means for distress screening and triage to supportive care services. Reported challenges included apparent inappropriateness of the tools due to the nature of the call or level of caller distress, the DT numeric scale, and the level of operator training. Conclusions We observed positive outcomes to using the DT and PL, although operators reported some challenges. Overcoming these challenges may improve distress screening particularly by less experienced clinicians, and further development of the PL items and DT scale may assist with administration. The DT and PL allow clinicians to direct/prioritise interventions or referrals, although ongoing training and support is critical in distress screening.
Resumo:
Objective Although several validated nutritional screening tools have been developed to “triage” inpatients for malnutrition diagnosis and intervention, there continues to be debate in the literature as to which tool/tools clinicians should use in practice. This study compared the accuracy of seven validated screening tools in older medical inpatients against two validated nutritional assessment methods. Methods This was a prospective cohort study of medical inpatients at least 65 y old. Malnutrition screening was conducted using seven tools recommended in evidence-based guidelines. Nutritional status was assessed by an accredited practicing dietitian using the Subjective Global Assessment (SGA) and the Mini-Nutritional Assessment (MNA). Energy intake was observed on a single day during first week of hospitalization. Results In this sample of 134 participants (80 ± 8 y old, 50% women), there was fair agreement between the SGA and MNA (κ = 0.53), with MNA identifying more “at-risk” patients and the SGA better identifying existing malnutrition. Most tools were accurate in identifying patients with malnutrition as determined by the SGA, in particular the Malnutrition Screening Tool and the Nutritional Risk Screening 2002. The MNA Short Form was most accurate at identifying nutritional risk according to the MNA. No tool accurately predicted patients with inadequate energy intake in the hospital. Conclusion Because all tools generally performed well, clinicians should consider choosing a screening tool that best aligns with their chosen nutritional assessment and is easiest to implement in practice. This study confirmed the importance of rescreening and monitoring food intake to allow the early identification and prevention of nutritional decline in patients with a poor intake during hospitalization.
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.
Resumo:
Virtual Reality (VR) techniques are increasingly being used in education about and in the treatment of certain types of mental illness. Research indicates VR is delivering on it's promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1−2% of the population. A significant research project being undertaken at the University of Queensland has constructed virtual environments that reproduce the phenomena experienced by patients who have psychosis. The VR environment will allow behavioral exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the work of the project, previous stages of software development and current and future educational and clinical applications of the Virtual Environments.
Resumo:
A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
An important function of clinical cancer registries is to provide feedback to clinicians on various performance measures. To date, most clinical cancer registries in Australia are located in tertiary academic hospitals, where adherence to guidelines is probably already high. Microscopic confirmation is an important process measure for lung cancer care. We found that the proportion of patients with lung cancer without microscopic confirmation was much higher in regional public hospitals (27.1%) than in tertiary hospitals (7.5%), and this disparity remained after adjusting for age, sex and comorbidities. The percentage was also higher in the private than in the public sector. This case study shows that we need a population-based approach to measuring clinical indicators that includes regional public hospitals as a matter of priority and should ideally include the private sector.