987 resultados para lateral composition modulation
Resumo:
Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Resumo:
Little is known about the neuronal changes that occur within the lateral amygdala (LA) following fear extinction. In fear extinction, the repeated presentation of a conditioned stimulus (CS), in the absence of a previously paired aversive unconditioned stimulus (US), reduces fear elicited by the CS. Fear extinction is an active learning process that leads to the formation of a consolidated extinction memory, however it is fragile and prone to spontaneous recovery and renewal under environmental changes such as context. Understanding the neural mechanisms underlying fear extinction is of great clinical relevance, as psychological treatments of several anxiety disorders rely largely on extinction-based procedures and relapse is major clinical problem. This study investigated plasticity in the LA following fear memory reactivation in rats with and without extinction training. Phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for fear learning and its extinction, was used as a marker for neuronal plasticity. Rats (N = 11) underwent a Pavlovian auditory fear conditioning and extinction paradigm, and later received a single conditioned stimulus presentation to reactivate the fear memory. Results showed more pMAPK+ expressing neurons in the LA following extinction-reactivation compared to control rats, with the largest number of pMAPK+ neurons counted in the ventral LA, especially including the ventro-lateral subdivision (LAvl). These findings indicate that LA subdivision specific plasticity occurs to the conditioned fear memory in the LAvl following extinction-reactivation. These findings provide important insight into the organisation of fear memories in the LA, and pave the way for future research in the memory mechanisms of fear extinction and its pathophysiology.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Objectives: Obesity is a disease with excess body fat where health is adversely affected. Therefore it is prudent to make the diagnosis of obesity based on the measure of percentage body fat. Body composition of a group of Australian children of Sri Lankan origin were studied to evaluate the applicability of some bedside techniques in the measurement of percentage body fat. Methods: Height (H) and weight (W) was measured and BMI (W/H2) calculated. Bioelectrical impedance analysis (BIA) was measured using tetra polar technique with an 800 μA current of 50 Hz frequency. Total body water was used as a reference method and was determined by deuterium dilution and fat free mass and hence fat mass (FM) derived using age and gender specific constants. Percentage FM was estimated using four predictive equations, which used BIA and anthropometric measurements. Results: Twenty-seven boys and 15 girls were studied with mean ages being 9.1 years and 9.6 years, respectively. Girls had a significantly higher FM compared to boys. The mean percentage FM of boys (22.9 ± 8.7%) was higher than the limit for obesity and for girls (29.0 ± 6.0%) it was just below the cut-off. BMI was comparatively low. All but BIA equation in boys under estimated the percentage FM. The impedance index and weight showed a strong association with total body water (r 2 = 0.96, P < 0.001). Except for BIA in boys all other techniques under diagnosed obesity. Conclusions: Sri Lankan Australian children appear to have a high percentage of fat with a low BMI and some of the available indirect techniques are not helpful in the assessment of body composition. Therefore ethnic and/or population specific predictive equations have to be developed for the assessment of body composition, especially in a multicultural society using indirect methods such as BIA or anthropometry.
Resumo:
The power to influence others in ever-expanding social networks in the new knowledge economy is tied to capabilities with digital media production. This chapter draws on research in elementary classrooms to examine the repertoires of cross-disciplinary knowledge that literacy learners need to produce innovative digital media via the “social web”. It focuses on the knowledge processes that occurred when elementary students engaged in multimodal text production with new digital media. It draws on Kalantzis and Cope’s (2008) heuristic for theorizing “Knowledge Processes” in the Learning by Design approach to pedagogy. Learners demonstrate eight “Knowledge Processes” across different subject domains, skills areas, and sensibilities. Drawing data from media-based lessons across several classroom and schools, this chapter examines what kinds of knowledge students utilize when they produce digital, multimodal texts in the classroom. The Learning by Design framework is used as an analytic tool to theorize how students learn when they engaged in a specific domain of learning – digital media production.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Patients with anorexia nervosa (AN) have low body weight, depleted fat stores, and reduced muscle mass. Both total body potassium (TBK) and bioelectrical impedance analysis (BIA) have been used to measure the body composition of these patients.1–4 Whereas TBK accurately measures body cell mass, the metabolically active compartment of the body, whole body potassium counters are expensive and not readily available. The purpose of this study was to investigate the potential of multiple frequency BIA (MFBIA) to monitor changes in body compartments in patients with AN.
Resumo:
The process view concept deploys a partial and temporal representation to adjust the visible view of a business process according to various perception constraints of users. Process view technology is of practical use for privacy protection and authorization control in process-oriented business management. Owing to complex organizational structure, it is challenging for large companies to accurately specify the diverse perception of different users over business processes. Aiming to tackle this issue, this article presents a role-based process view model to incorporate role dependencies into process view derivation. Compared to existing process view approaches, ours particularly supports runtime updates to the process view perceivable to a user with specific view merging operations, thereby enabling the dynamic tracing of process perception. A series of rules and theorems are established to guarantee the structural consistency and validity of process view transformation. A hypothetical case is conducted to illustrate the feasibility of our approach, and a prototype is developed for the proof-of-concept purpose.
Resumo:
Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.
Resumo:
We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.
Resumo:
Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.