381 resultados para lääketiede, lastenpsykiatria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snoring is a primary and major clinical symptom of upper airway obstruction during sleep. Sleep-disordered breathing ranges from primary snoring to significant partial upper airway obstruction, and obstructive sleep apnea. Adult snoring and obstructive sleep apnea have been extensively studied, whereas less is known about these disorders in children. Snoring and more severe obstructive sleep apnea have been shown to have a harmful effect on the neurobehavioral development of children, but the mechanisms of this effect remains unknown. Furthermore, the correlation of this effect to objective sleep study parameters remains poor. This study evaluated the prevalence of snoring in preschool-aged children in Finland. Host and environmental risk factors, and neurobehavioral and neurocognitive symptoms of children suffering from snoring or obstructive sleep apnea were also investigated. The feasibility of acoustic rhinometry in young children was assessed. The prevalence and risk factors of snoring (I) were evaluated by a questionnaire. The random sample included 2100 children aged 1-6 years living in Helsinki. All 3- to 6-year-old children whose parents reported their child to snore always, often, or sometimes were categorized as snorers, and invited to participate to the clinical study (II-IV). Non-snoring children whose parents were willing to participate in the clinical study were invited to serve as controls. Children underwent a clinical ear-nose-throat examination. Emotional, behavioral, and cognitive performances were evaluated by Child Behavioral Checklist (CBCL), Wechsler Preschool and Primary Scale of Intelligence (WPPSI-R) and NEPSY-A Developmental Neuropsychological Assessment (NEPSY). Nasal volume was measured by acoustic rhinometry, and nasal resistance by rhinomanometry. Lateral and posteroanterior cephalometry were performed. A standard overnight ambulatory polysomnography was performed in the home environment. Twenty-six healthy children were tested in order to assess the feasibility of acoustic rhinometry in young children (V). Snoring was common in children; 6.3% of children snored always or often, whereas 81.3% snored never or occasionally. No differences were apparent between snorers and non-snorers regarding age, or gender. Pediatric snoring was associated with recurrent upper respiratory infections, otitis media, and allergic rhinitis. Exposure to parental tobacco smoke, especially maternal smoking, was more common among snorers. Rhinitis was more common among children who exposured to tobacco smoke. Overnight polysomnography (PSG) was performed on 87 children; 74% showed no signs of significant upper airway obstruction during sleep. Three children had obstructive apnea/hypopnea index (OAHI) greater than 5/h. Age, gender, or a previous adenoidectomy or tonsillectomy did not correlate with OAHI, whereas tonsillar size did correlate with OAHI. Relative body weight and obesity correlated with none of the PSG parameters. In cephalometry, no clear differences or correlations were found in PSG parameters or between snorers and non-snorers. No correlations were observed between acoustic rhinometry, rhinomanometry, and PSG parameters. Psychiatric symptoms were more frequent in the snoring group than in the nonsnoring group. In particular, anxious and depressed symptoms were more prevalent in the snoring group. Snoring children frequently scored lower in language functions. However, PSG parameters correlated poorly with neurocognitive test results in these children. This study and previous studies indicate that snoring without episodes of obstructive apnea or SpO2 desaturations may cause impairment in behavioral and neurocognitive functions. The mechanism of action remains unknown. Exposure to parental tobacco smoke is more common among snorers than non-snorers, emphasizing the importance of a smoke-free environment. Children tolerated acoustic rhinometry measurements well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is a slowly progressive disease characterized by airway inflammation and largely irreversible airflow limitation. One major risk factor for COPD is cigarette smoking. Since the inflammatory process starts many years prior to the onset of clinical symptoms and still continues after smoking cessation, there is an urgent need to find simple non-invasive biomarkers that can be used in the early diagnosis of COPD and which could help in predicting the disease progression. The first aim of the present study was to evaluate the involvement of different oxidative/nitrosative stress markers, matrix metalloproteinases (MMPs) and their tissue inhibitor-1 (TIMP-1) in smokers and in COPD. Elevated numbers of inducible nitric oxide synthase (iNOS), nitrotyrosine, myeloperoxidase (MPO) and 4-hydroxy-2-nonenal (4-HNE) positive cells and increased levels of 8-isoprostane and lactoferrin were found in sputum of non-symptomatic smokers compared to non-smokers, and especially in subjects with stable mild to moderate COPD, and they correlated with the severity of airway obstruction. This suggests that an increased oxidant burden exists already in the airways of smokers with normal lung function values. However, none of these markers could differentiate healthy smokers from symptomatic smokers with normal lung function values i.e. those individuals who are at risk of developing COPD. In contrast what is known about asthma exhaled nitric oxide (FENO) was lower in smokers than in non-smokers, the reduced FENO value was significantly associated with neutrophilic inflammation and the elevated oxidant burden (positive cells for iNOS, nitrotyrosine and MPO). The levels of sputum MMP-8 and plasma MMP-12 appeared to differentiate subjects who have a risk for COPD development but these finding require further investigations. The levels of all studied MMPs correlated with the numbers of neutrophils, and MMP-8 and MMP-9 with markers of neutrophil activation (MPO, lactoferrin) suggesting that especially neutrophil derived oxidants may stimulate the tissue destructive MMPs already in lungs of smokers who are not yet experiencing any airflow limitation. When investigating the role of neutrophil proteases (neutrophil elastase, MMP-8, MMP-9) during COPD exacerbation and its recovery period, we found that levels of all these proteases were increased in sputum of patients with COPD exacerbation as compared to stable COPD and controls, and decreased during the one-month recovery period, giving evidence for a role of these enzymes in COPD exacerbations. In the last study, the effects of subject`s age and smoking habits were evaluated on the plasma levels of surfactant protein A (SP-A), SP-D, MMP-9 and TIMP-1. Long-term smoking increased the levels of all of these proteins. SP-A most clearly correlated with age, pack years and lung function decline (FEV1/FVC), and based on the receiver operating characteristic curve analysis, SP-A was the best marker for discriminating subjects with COPD from controls. In conclusion, these findings support the hypothesis that especially neutrophil derived oxidants may activate MMPs and induce an active remodeling process already in the lungs of smokers with normal lung function values. The marked increase of sputum levels of neutrophil proteases in smokers, stable COPD and/or during its exacerbations suggest that these enzymes play a role in the development and progression of COPD. Based on the comparison of various biomarkers, SP-A can be proposed to serve as sensitive biomarker in COPD development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to a large body of evidence, carotid endarterectomy (CEA) can prevent strokes, provided that appropriate inclusion criteria and high-quality perioperative treatment methods are utilised with low complication rates. From the patient s perspective, it is of paramount importance that the operation is as safe and effective as possible. From the community s point of view, it is important that CEA provision prevents as many strokes as possible. In order to define the stroke preventing potential of CEA in different communities, a comparison between eight European countries and Australia was performed including 53 077 carotid interventions. A more detailed evaluation was performed in Finland, the United Kingdom and Egypt. It could be estimated that many potentially preventable strokes occur due to insufficient diagnostics and CEA provision. The number of CEAs should be at least doubled in the Helsinki region. The theoretical power of CEA provision in stroke prevention varied significantly between the countries. Delay from symptom to surgery has been identified as one of the most important factors influencing the effectiveness of CEA. In 2008 only 11% of CEAs in Helsinki university central hospital (HUCH) were performed within the recommended14 days. Registered data of 673 CEAs in HUCH during 2000-2005 was analyzed. There was no systematic error that would have changed the outcome analysis. However it is important that registers are audited regularly and cross matching of different registries is possible. A previously unpublished method of combining medial mandibulotomy, neck incision and carotid artery interposition was carried out as a collaboration of maxillofacial, ear, nose and throat and vascular surgeons. Five patients were operated on with a technique that was feasible and possible to perform with little morbidity, but due to the significant risks involved, this technique should be reserved for carefully selected cases. In stroke prevention, organisational decisions seem far more important than details in interventional procedures when CEA is performed with low complication rates, as was the case in the present study. A TIA clinic approach with close co-operation between the on-call vascular surgeons, neurologists and radiologists should be available at all centres treating these patients. Patients should have a direct and fast admission to the hospital performing CEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral cancer is the seventh most common cancer worldwide and its incidence is increasing. The most important risk factors for oral cancer are chronic alcohol consumption and tobacco smoking, up to 80 % of oral carcinomas are estimated to be caused by alcohol and tobacco. They both trigger an increased level of salivary acetaldehyde, during and after consumption, which is believed to lead to carcinogenesis. Acetaldehyde has multiple mutagenic features and it has recently been classified as a Group 1 carcinogen for humans by the International Agency for Research on Cancer. Acetaldehyde is metabolized from ethanol by microbes of oral microbiota. Some oral microbes possess alcohol dehydrogenase enzyme (ADH) activity, which is the main enzyme in acetaldehyde production. Many microbes are also capable of acetaldehyde production via alcohol fermentation from glucose. However, metabolism of ethanol into acetaldehyde leads to production of high levels of this carcinogen. Acetaldehyde is found in saliva during and after alcohol consumption. In fact, rather low ethanol concentrations (2-20mM) derived from blood to saliva are enough for microbial acetaldehyde production. The high acetaldehyde levels in saliva after alcohol challenge are explained by the lack of oral microbiota and mucosa to detoxify acetaldehyde by metabolizing it into acetate and acetyl coenzymeA. The aim of this thesis project was to specify the role of oral microbes in the in vitro production of acetaldehyde in the presence of ethanol. In addition, it was sought to establish whether microbial metabolism could also produce acetaldehyde from glucose. Furthermore, the potential of xylitol to inhibit ethanol metabolism and acetaldehyde production was explored. Isolates of oral microbes were used in the first three studies. Acetaldehyde production was analyzed after ethanol, glucose and fructose incubation with gas chromatography measurement. In studies I and III, the ADH enzyme activity of some microbes was measured by fluorescence. The effect of xylitol was analyzed by incubating microbes with ethanol and xylitol. The fourth study was made ex vivo and microbial samples obtained from different patient groups were analyzed. This work has demonstrated that isolates of oral microbiota are able to produce acetaldehyde in the presence of clinically relevant ethanol and glucose concentrations. Significant differences were found between microbial species and isolates from different patient groups. In particular, the ability of candidal isolates from APECED patients to produce significantly more acetaldehyde in glucose incubation compared to healthy and cancer patient isolates is an interesting observation. Moreover, xylitol was found to reduce their acetaldehyde production significantly. Significant ADH enzyme activity was found in the analyzed high acetaldehyde producing streptococci and candida isolates. In addition, xylitol was found to reduce the ADH enzyme activity of C. albicans. Some results from the ex vivo study were controversial, since acetaldehyde production did not correlate as expected with the amount of microbes in the samples. Nevertheless, the samples isolated from patients did produce significant amounts of acetaldehyde with a clinically relevant ethanol concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute respiratory failure (ARF) is the most common type of organ failure leading to the need for intensive care. It is often secondary to acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). ARF, and especially ALI and ARDS, cause increased morbidity, and mortality rates remain high (up to 40%). These disorders are characterised by inflammatory reaction and tissue damage. In some cases, inflammation continues and leads to an overwhelming repair process with ongoing fibrosis, accompanied by organ dysfunction and eventually a loss of function. Measuring the magnitude of the inflammation, and the repair process, would theoretically offer information concerning outcome. Early identification of patients whose disease process is likely to proceed unfavourably, would help clinicians to optimise their treatment. The aim of this study was to evaluate the epidemiology of ARF, its treatment, and outcome in Finland, with special interest in biomarkers, and their value in the prediction of mortality. Altogether, 958 adult patients treated with ventilatory support were prospectively included in this study during an eight week period in 2007 in 25 intensive care units. Plasma aminoterminal pro-brain natriuretic peptide (NT-pro-BNP) was assessed in 602 patients, and plasma cell-free DNA in 580 patients, to evaluate their prognostic value in ARF. Markers of collagen metabolism were studied in longitudinal serum samples in 68 patients in order to evaluate their evolution in ARF and the association to multiple organ dysfunction (MOD). Ventilatory support was used in 39% of all ICU patients. The estimated incidence of ARF was 149.5/100 000 per year. Median tidal volumes used were higher than recommended. Overall mortality at 90 days was 31%. Plasma NT-pro-BNP and cell-free DNA were highly increased in the majority of patients. Both markers were independent predictors of 90-day mortality, but their discriminative power was at most moderate when used separately. The mortality was highest in those patients, in whom both biomarkers were over their separate cut-off values. Thus, combined use of these biomarkers may increase their clinical value in the mortality prediction. The markers of collagen metabolism changed significantly over time in surviving patients. None of these markers did associate with MOD in these patients.