993 resultados para intra prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new speech enhancement approach, that is based on exploiting the intra-frame dependency of discrete cosine transform (DCT) domain coefficients. It can be noted that the existing enhancement techniques treat the transformdomain coefficients independently. Instead of this traditional approach of independently processing the scalars, we split the DCT domain noisy speech vector into sub-vectors and each sub-vector is enhanced independently. Through this sub-vector based approach, the higher dimensional enhancement advantage, viz. non-linear dependency, is exploited. In the developed method, each clean speech sub-vector is modeled using a Gaussian mixture (GM) density. We show that the proposed Gaussian mixture model (GMM) based DCT domain method, using sub-vector processing approach, provides better performance than the conventional approach of enhancing the transform domain scalar components independently. Performance improvement over the recently proposed GMM based time domain approach is also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.