972 resultados para intense exercise
Resumo:
A study on the interactions of high intensity (similar to 10(16) W/cm(2)) femtosecond laser pulses with rare gas clusters in a dense jet is performed. Energy absorption by Ar and Xe clusters is measured and it can be as high as 90%. Very energetic ions produced in the laser interaction with a dense cluster jet are detected by time-of-flight spectrometry and the maximum ion energy of Xe is up to 1.3 MeV. The average ion energies are found to increase with increasing cluster size and get saturated gradually. The average ion energies also show a strong directionality and the average ion energy in the direction parallel to the laser polarization vector is 40% higher than that perpendicular to it. The findings are discussed in terms of a model of charge-dependent ion acceleration.
Resumo:
We propose a plasma channel scheme to obtain an improved table-top laser driven fusion neutron yield as a result of explosions of large deuterium clusters irradiated by an intense laser pulse. A cylindrical plasma channel is created by two moderate intensity laser prepulses at the edge of a deuterium cluster jet along which an intense main laser pulse propagates several nanoseconds later. With the aid of this plasma channel, the main laser pulse will be allowed to deposit its energy into the central region of the deuterium gas jet where the cluster sizes are larger and the atomic density is higher. The plasma channel formation and its impact on the deuterium ion energy spectrum and the consequent fusion neutron yield have been investigated. The calculated results show that a remarkable increase of the table-top laser driven fusion neutron yield would be expected.
Resumo:
The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subclusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the case of homonuclear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuclear clusters with larger sizes are required to achieve a greater neutron yield.
Resumo:
Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 10(19)-10(20) W mu m(2)/cm(2). In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100 MeV energy.
Resumo:
Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.
Resumo:
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A scheme for electron self-injection in the laser wakefield acceleration is proposed. In this scheme, the transverse wave breaking of the wakefield and the tightly focused geometry of the laser beam play important roles. A large number of the background electrons are self-injected into the acceleration phase of the wakefield during the defocusing of the tightly focused laser beam as it propagates through an underdense plasma. Particle-in-cell simulations performed using a 2D3V code have shown generation of a collimated electron bunch with a total number of 1.4 x 109 and energies up to 8 MeV. (C) 2005 American Institute of Physics.
Resumo:
In a recent experimental work on the excess photon detachment (EPD) of H- ions [Phys. Rev. Lett. 87 (2001) 243001] it has been found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. By using a nonperturbative quantum scattering theory, we obtain the kinetic energy spectra for the differential detachment rate along the laser polarization for several laser intensities. It is demonstrated that higher order EPD peaks are produced mainly at relatively higher laser intensities. By calculating the overall EPD spectra with varying laser intensities, it is found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. Our calculations are in good agreement with the experimental observation. It is found that different EPD channels occur mainly when the laser field reaches some values, thus the intensity distribution of the laser field is responsible for the varying ponderomotive shifts.
Resumo:
Linear Thomson scattering of a short pulse laser by relativistic electron lids been investigated using computer simulations. It is shown that scattering of an intense laser pulse of similar to 33 fs full width at half maximum, with an electron of gamma(o) = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds, with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.
Resumo:
The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
We demonstrate a pulse compression technique through filamentation in an argon-filled cell. By using a pair of chirped mirrors for dispersion compensation, we have successfully compressed the 53 fs pulse to 15 fs with good spatial qualities and good pulse stability. The total transmitted efficiency is more than 75%. The influence of the experiment parameters to the compressed pulses is also studied experimentally.