987 resultados para heavy ion collisions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To estimate the biological risks from space radiation encountered by cosmonauts in outer space, the effects from whole-body exposure to carbon ions or X-rays irradiations at 0, 0.39, 0.55 and 1 Gy at a dose rate of 0.2 Gy/min were investigated in BALB/c mice. The relative thymus and spleen weights were measured at 24 h after exposure, and the cell cycle distribution and percentage of apoptosis of thymocytes and spleen and peripheral blood lymphocytes were determined by flow cytometry. The data showed that exposure to carbon ions delayed cell progression of peripheral blood lymphocytes in S-phase, and delayed thymocytes and spleen lymphocytes in G(0)/G(1)-phase. Apoptosis of thymocytes and peripheral blood lymphocytes induced by carbon ions increased more rapidly with dose than was the case for X-rays. There were some differences between the relative weight loss of the thymus and the spleen with increasing dose of either carbon ions or X-rays. The results obtained provide evidence of dose- and organ-specific differences induced by carbon ions compared to X-rays, with increased apoptosis in peripheral blood lymphocytes and thymocytes, but not spleen lymphocytes. Our data may suggest that further work would be of interest to estimate risk of changes in immune function during particle radiation exposures in space travel. (c) 2007 COSPAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since 1998, many experiments for metallic ion production have been done on LECR2 (Lanzhou ECR ion source NO.2), LECR3 (Lanzhou ECR ion source NO.3) and SECRAL (Superconductiong ECR ion source Advanced design in Lanzhou) at Institute of Modern Physics. The very heavy metallic ion beams such as those of uranium were also produced by the plasma sputtering method, and supplied for HIRFL (Heavy Ion Research Facility in Lanzhou) accelerators successfully. During the test, 11.5e mu AU(28+), 9e mu AU(24+) were obtained. Some ion beams of the metal having lower melting temperature such as Ni and Mg ion beams were produced by oven method on LECR3 too. The consumption rate was controlled to be lower for Mg-26 ion beams production, and the minimum consumption was about 0.3mg per hour. In this paper, the main experimental results are given. Some discussions are made for some experimental phenomena and results, and some conclusions are drawn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystal sapphire (Al2O3) samples implanted with 110 keV He and irradiated at 320 K by Pb-208(27), ions with energy of 1.1 MeV/u to the fluences ranging from 1 X 10(12) to 5 X 10(14) ion/cm(2) and subsequently annealed at 600, 900 and 1100 K. The obtained PL spectra showed that emission peaks centred at 375, 390, 413, and 450 nm appeared in irradiated samples. The peak of 390 ran became very intense after 600 K annealing. The peak of 390 nm weakened and 510 nm peak started to build up at 900 K annealing, the peak of 390 nm vanished and 510 nm peak increased with the annealing temperature rising to 1100 K. Infrared spectra showed a broadening of the absorption band between 460 cm(-1), and 510 cm(-1) indicating strongly damaged regions being formed in the Al2O3 samples and position shift of the absorption band at 1000-1300 cm(-1) towards higher wavenumber after Pb irradiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biophysical characteristics of heavy ions make them a rational source of radiation for use in radiotherapy of malignant tumours. Prior to radiotherapy treatment, a therapeutic regimen must be precisely defined, and during this stage information on individual patient radiosensitivity would be of very great medical value. There are various methods to predict radiosensitivity, but some shortfalls are difficult to avoid. The present study investigated the induction of chromatid breaks in five different cell lines, including one normal liver cell line (L02), exposed to carbon ions accelerated by the heavy ion research facility in Lanzhou (HIRFL), using chemically induced premature chromosome condensation (PCC). Previous studies have reported the number of chromatid breaks to be linearly related to the radiation dose, but the relationship between cell survival and chromatid breaks is not clear. The major result of the present study is that cellular radiosensitivity, as measured by D-0, is linearly correlated with the frequency of chromatid breaks per Gy in these five cell lines. We propose that PCC may be applied to predict radiosensitivity of tumour cells exposed to heavy ions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the construction of the neutron detection wall at the external target position on Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR), it will be possible to detect high energy neutron. A BUU model is applied to simulate the flow in both symmetric (Ni+Ni, Pb+Pb) and asymmetric(Pb+Ni) systems. It is shown that at above several hundreds MeV/u, the flow signals are very obvious and depend clearly on the centrality of the collisions. Based on the products in the forward angle less than 20 degrees, the simulation also reveals that the determination of the reaction plane and the selection of the impact parameter, both of which are essential in the flow measurement, are well implemented. The double event and its influence on the determination of the neutron flow are also simulated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the first time the physical properties of therapeutic carbon-ion beam supplied by, the shallow-seated tumor therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL) are measured. For a 80.55MeV/u C-12 ion beam delivered to the therapy terminal, the homogeneity of irradiation fields is 73.48%, when the beam intensity varied in the range of 0.001-0.1nA (i.e. 1 X 10(6) - 1 X 10(8) particles per second). The stability of the beam intensity within a few minutes is estimated to be 80.87%. The depth-dose distribution of the beam at the isocenter of the therapy facility is measured, and the position of the high-dose Bragg peak is found to be located at the water-equivalent depth of 13.866mm. Based on the relationship between beam energy and Bragg peak position, the corresponding beam energy at the isocenter of the therapy terminal is evaluated to be 71.71MeV/u for the original 80.55MeV/u C-12 ion beam, which consisted basically with calculation. The readout of the previously-used air-free ionization chamber regarding absorbed dose is calibrated as well in this experiment. The results indicate that the performance of the therapy facility should be optimized further to meet the requirements of clinical trial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central Au-197 + Au-197 reaction at an incident beam energy of 400 MeV/nucleon, the effect of nuclear symmetry potential at supra-saturation densities on the preequilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron-to-proton ratio of lighter clusters with mass number A less than or similar to 3 [(n/p)(A less than or similar to 3)] is larger than that of the heavier clusters with mass number A > 3 [(n/p)(A>3)], whereas for the negative symmetry potential at supra-saturation densities the (n/p)(A less than or similar to 3) is smaller than the (n/p)(A>3). This may be considered as a probe of the negative symmetry potential at supra-saturation densities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For radiation protection purposes, the neutron dose in carbon ion radiation therapy at the HIRFL (Heavy Ion Research Facility in Lanzhou) was investigated. The neutron dose from primary C-12 ions with a specific energy of 100 MeV/u delivered from SSC was roughly measured with a standard Anderson-Broun rem-meter using a polyethylene target at various distances. The result shows that a maximum neutron dose contribution of 19 mSv in a typically surface tumor treatment was obtained, which is less than 1% of the planed heavy ion dose and is in reasonable agreement with other reports. Also the gamma-ray dose was measured in this experiment using a thermo luminescent detector.