971 resultados para fixed wireless broadband
Broadcast in Adhoc Wireless Networks with Selfish Nodes: A Bayesian Incentive Compatibility Approach
Resumo:
We consider the incentive compatible broadcast (ICB) problem in ad hoc wireless networks with selfish nodes. We design a Bayesian incentive compatible broadcast (BIC-B) protocol to address this problem. VCG mechanism based schemes have been popularly used in the literature to design dominant strategy incentive compatible (DSIC) protocols for ad hoc wireless networks. VCG based mechanisms have two critical limitations: (i) the network is required to be bi-connected, (ii) the resulting protocol is not budget balanced. Our proposed BIC-B protocol overcomes these difficulties. We also prove the optimality of the proposed scheme.
Resumo:
We consider the classical problem of sequential detection of change in a distribution (from hypothesis 0 to hypothesis 1), where the fusion centre receives vectors of periodic measurements, with the measurements being i.i.d. over time and across the vector components, under each of the two hypotheses. In our problem, the sensor devices ("motes") that generate the measurements constitute an ad hoc wireless network. The motes contend using a random access protocol (such as CSMA/CA) to transmit their measurement packets to the fusion centre. The fusion centre waits for vectors of measurements to accumulate before taking decisions. We formulate the optimal detection problem, taking into account the network delay experienced by the vectors of measurements, and find that, under periodic sampling, the detection delay decouples into network delay and decision delay. We obtain a lower bound on the network delay, and propose a censoring scheme, where lagging sensors drop their delayed observations in order to mitigate network delay. We show that this scheme can achieve the lower bound. This approach is explored via simulation. We also use numerical evaluation and simulation to study issues such as: the optimal sampling rate for a given number of sensors, and the optimal number of sensors for a given measurement rate
Resumo:
In this paper, we consider the problem of association of wireless stations (STAs) with an access network served by a wireless local area network (WLAN) and a 3G cellular network. There is a set of WLAN Access Points (APs) and a set of 3G Base Stations (BSs) and a number of STAs each of which needs to be associated with one of the APs or one of the BSs. We concentrate on downlink bulk elastic transfers. Each association provides each ST with a certain transfer rate. We evaluate an association on the basis of the sum log utility of the transfer rates and seek the utility maximizing association. We also obtain the optimal time scheduling of service from a 3G BS to the associated STAs. We propose a fast iterative heuristic algorithm to compute an association. Numerical results show that our algorithm converges in a few steps yielding an association that is within 1% (in objective value) of the optimal (obtained through exhaustive search); in most cases the algorithm yields an optimal solution.
Resumo:
Performance improvement of a micromachined patch antenna operating at 30 GHz with a capacitively coupled feed arrangement is presented here. Such antennas are useful for monolithic integration with active components. Specifically, micromachining can be employed to achieve a low dielectric constant region under the patch which causes (i) the suppression of surface waves and hence the increase in radiation efficiency and (ii) increase in the bandwidth. The performance of such a patch antenna can be significantly improved by selecting a coupled feed arrangement. We have optimized the dimensions and location of the capacitive feeding strip to get the maximum improvement in bandwidth. Since this is a totally planar arrangement, and does not involve any stacked structures, this antenna is easy to fabricate using standard microfabrication techniques. The antenna element thus designed has a -10 dB bandwidth of 1600 MHz
Resumo:
In this work, we construct a unified family of cooperative diversity coding schemes for implementing the orthogonal amplify-and-forward and the orthogonal selection-decode-and-forward strategies in cooperative wireless networks. We show that, as the number of users increases, these schemes meet the corresponding optimal high-SNR outage region, and do so with minimal order of signaling complexity. This is an improvement over all outage-optimal schemes which impose exponential increases in signaling complexity for every new network user. Our schemes, which are based on commutative algebras of normal matrices, satisfy the outage-related information theoretic criteria, the duplex-related coding criteria, and maintain reduced signaling, encoding and decoding complexities
Resumo:
We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.
Resumo:
We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.
Resumo:
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Resumo:
This paper presents a robust fixed order H2controller design using strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H2controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation