789 resultados para fish handling
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of Iowans consuming fish. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans.
Resumo:
BACKGROUND AND AIMS: Fish oil (FO) supplementation prevents the development of obesity and insulin resistance, and upregulate the expression of UCP3 in skeletal muscle in rodents. This may represent indirect evidence that FO promotes fat oxidation and/or alter energy efficiency. The aim of this study was to evaluate whether such effects can be observed in humans. The metabolic effects of FO were assessed during exercise in order to obtain a direct measurement of energy efficiency. METHODS: Eight healthy male volunteers were studied with and without supplementation with 7.2 g/day FO (including 1.1 g/day eicosopentaenoic acid and 0.7 g/day decosahexaenoic acid) during 14 days. Their VO(2 max) was measured on cycle ergometer. Thereafter, energy metabolism (substrate oxidation, energy expenditure and energy efficiency) was assessed during a 30 min cycling exercise at 50% VO(2 max) performed 2 h 30 after a standardized, high carbohydrate breakfast. RESULTS: VO(2 max) was 38.6+/-2.2 after FO and 38.4+/-2.0 (mL x kg(-1) x min(-1)) in control conditions (NS). Basal plasma glucose, insulin and NEFA concentrations, and energy metabolism were similar with FO and in controls. During exercise, the increases in plasma NEFA concentrations, energy expenditure, glucose and lipid oxidation, and the decreases in glycaemia and insulinemia were not altered by FO intake. Energy efficiency was 22.4+/-0.6% after FO vs 21.8+/-0.7% in controls. In order to ascertain that the absence of effects of FO was not due to consumption of a carbohydrate meal immediately before exercise, 4 of the 8 subjects were re-studied in fasting conditions, FO also failed to alter energy efficiency in this subset of studies. CONCLUSION: FO supplementation did not significantly alter energy metabolism and energy efficiency during exercise in healthy humans.
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
The objective of this work was to evaluate the parasitic fauna of hybrid tambacu (Colossoma macropomum x Piaractus mesopotamicus) from fish farms and the host-parasite relationship. A hundred and fourteen fish were collected from four fish farms in Macapá, in the state of Amapá, Brazil, 80.7% of which were infected by: Ichthyophthirius multifiliis (Ciliophora); Piscinoodinium pillulare (Dinoflagellida); Anacanthorus spatulatus, Notozothecium janauachensis, and Mymarothecium viatorum (Monogenoidea); Neoechinorhynchus buttnerae (Acanthocephala); Cucullanus colossomi (Nematoda); Perulernaea gamitanae (Lernaeidae); and Proteocephalidae larvae (Cestoda). A total of 8,136,252 parasites were collected from the examined fish. This is the first record of N. buttnerae, C. colossomi, N. janauachensis, M. viatorum, and Proteocephalidae for hybrid tambacu in Brazil. Ichthyophthirius multifiliis was the most prevalent parasite, whereas endohelminths were the less. A positive correlation was observed between number of I. multifiliis and total length and weight of fish, as well as between number of P. gamitanae and total length. The infection by I. multifiliis had association with the parasitism by Monogenoidea. Low water quality contributes to high parasitism of hybrid tambacu by ectoparasites, which, however, does not influence the relative condition factor of fish.
Resumo:
Peer reviewed
Resumo:
The objective of this work was to evaluate fish oil replacement by soybean oil in diets, as for the effects on the performance and body composition of juveniles of fat snook (Centropomus parallelus). The experiment was carried out in a randomized block design, with three treatments (lipid sources) and six replicates, in a 60-day period. Fat snook juveniles (24.17±0.28g) were distributed in 18 experimental tanks of 200 L each, equipped with aeration and heating systems, under continuous water renovation (800% per day). Three isoproteic (44% CP) and isoenergetic (4,635 kcal CE kg-1) diets were formulated to comprise three replacement rates (0, 50, and 100%) of fish oil by soybean oil. Biometric analyses were done to evaluate fish performance, and two entire specimens from each replicate were used for body composition analyses. The zootechnical indices of weight gain (38.68±5.41 g), feed conversion (1.38±0.10), and specific growth at 1.70±0.18% weight gain per day were considered satisfactory. Lipid source substitution does not affect the performance and body composition of fat snook juveniles, which suggests that soybean oil can replace fish oil in diet formulation.
Resumo:
Container Handling Equipment Monitoring System (CHEMS) is a system developed by Savcor One Oy. CHEMS measures important information for container ports performance and produces performance indicators. The aim of this thesis was to clarify performance measurement contents to Savcor and to develop, as an example, performance measures to Steveco Oy's container operations. The theoretical part of the thesis clarifies performance measurement and which of its components are important to container port. Performance measurement and measures are presented from the operational level's point of view, in which CHEMS is planned to aim. The theory of development process of performance measures is introduced at the end of the theoretical part. To make sure that performance measures are efficiently used, Steveco Oy's performance measures are developed in cooperation with the users. The measurement in operational level is continuous and the results must be reacted asquickly as possible. CHEMS is very suitable to continuous measurement and to produce real time-measures of container operations which are hard to get any otherway.
Resumo:
Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.
Resumo:
As production and use of nanomaterials in commercial products grow it is imperative to ensure these materials are used safely with minimal unwanted impacts on human health or the environment. Foremost among the populations of potential concern are workers who handle nanomaterials in a variety of occupational settings, including university laboratories, industrial manufacturing plants and other institutions. Knowledge about prudent practices for handling nanomaterials is being developed by many groups around the world but may be communicated in a way that is difficult for practitioners to access or use. The GoodNanoGuide is a collaborative, open-access project aimed at creating an international forum for the development and discussion of prudent practices that can be used by researchers, workers and their representatives, occupational safety professionals, governmental officials and even the public. The GoodNanoGuide is easily accessed by anyone with access to a web browser and aims to become a living repository of good practices for the nanotechnology enterprise. Interested individuals are invited to learn more about the GoodNanoGuide at http://goodnanoguide.org.
Resumo:
Tutkimuksen tavoitteena oli selvittää Suomen ja Japanin välisten kulttuurierojen vaikutus valitustenkäsittelyprosessiin ja laatukäsityksiin case-yrityksen ja sen asiakkaiden välillä. Teoreettisen viitekehyksen muodostamisessa käytettiin näkemyksiä kulttuurista, kulttuurienvälisestä viestinnästä, valitustenkäsittelystä ja laatukäsityksistä. Kulttuurierojen tarkastelemiseksi esiteltiin kulttuurien ulottuvuuksia eritteleviä viitekehyksiä ja kulturaalisten tekijöiden vaikutusta viestintään. Suomen ja Japanin kulttuureja esiteltiin myös yksityiskohtaisemmin aikaisempien tutkimusten valossa. Työn empiirisessä osassa tutkittiin case-yrityksen sisäisiä sekä yrityksen ja sen asiakkaiden välisiä näkemyseroja. Tutkimus suoritettiin laadullisena case-tutkimuksena, jossa tarkasteltiin myös toimenpiteitä case-yrityksen liiketoimintaympäristön parantamiseksi. Tarvittava tieto kerättiin kirjallisuudesta, artikkeleista, taustahaastatteluilla sekä haastattelemalla yrityksen henkilöstöä Suomessa ja Japanissa samoin kuin sen japanilaisia asiakkaita. Japanilaiset asiakas/toimittaja-suhteet ovat ulkomaalaiselle yritykselle haastava liiketoimintaympäristö. Luottamuksen rakentaminen pitkällä tähtäimellä vaatii läheistä kommunikointia vastapuolen tuntemiseksi, jotta voidaan kehittää tuotteita paremmiksi ja vähentää valituskustannuksia. Laatuajattelua tulee myös yhdenmukaistaa tuotteiden ja palvelujen laadun parantamiseksi.