967 resultados para extraction methods
Resumo:
Correct modeling of the equivalent circuits regarding solar cell and panels is today an essential tool for power optimization. However, the parameter extraction of those circuits is still a quite difficult task that normally requires both experimental data and calculation procedures, generally not available to the normal user. This paper presents a new analytical method that easily calculates the equivalent circuit parameters from the data that manufacturers usually provide. The analytical approximation is based on a new methodology, since methods developed until now to obtain the aforementioned equivalent circuit parameters from manufacturer's data have always been numerical or heuristic. Results from the present method are as accurate as the ones resulting from other more complex (numerical) existing methods in terms of calculation process and resources.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
The structural connectivity of the brain is considered to encode species-wise and subject-wise patterns that will unlock large areas of understanding of the human brain. Currently, diffusion MRI of the living brain enables to map the microstructure of tissue, allowing to track the pathways of fiber bundles connecting the cortical regions across the brain. These bundles are summarized in a network representation called connectome that is analyzed using graph theory. The extraction of the connectome from diffusion MRI requires a large processing flow including image enhancement, reconstruction, segmentation, registration, diffusion tracking, etc. Although a concerted effort has been devoted to the definition of standard pipelines for the connectome extraction, it is still crucial to define quality assessment protocols of these workflows. The definition of quality control protocols is hindered by the complexity of the pipelines under test and the absolute lack of gold-standards for diffusion MRI data. Here we characterize the impact on structural connectivity workflows of the geometrical deformation typically shown by diffusion MRI data due to the inhomogeneity of magnetic susceptibility across the imaged object. We propose an evaluation framework to compare the existing methodologies to correct for these artifacts including whole-brain realistic phantoms. Additionally, we design and implement an image segmentation and registration method to avoid performing the correction task and to enable processing in the native space of diffusion data. We release PySDCev, an evaluation framework for the quality control of connectivity pipelines, specialized in the study of susceptibility-derived distortions. In this context, we propose Diffantom, a whole-brain phantom that provides a solution to the lack of gold-standard data. The three correction methodologies under comparison performed reasonably, and it is difficult to determine which method is more advisable. We demonstrate that susceptibility-derived correction is necessary to increase the sensitivity of connectivity pipelines, at the cost of specificity. Finally, with the registration and segmentation tool called regseg we demonstrate how the problem of susceptibility-derived distortion can be overcome allowing data to be used in their original coordinates. This is crucial to increase the sensitivity of the whole pipeline without any loss in specificity.
Resumo:
Speech recognition involves three processes: extraction of acoustic indices from the speech signal, estimation of the probability that the observed index string was caused by a hypothesized utterance segment, and determination of the recognized utterance via a search among hypothesized alternatives. This paper is not concerned with the first process. Estimation of the probability of an index string involves a model of index production by any given utterance segment (e.g., a word). Hidden Markov models (HMMs) are used for this purpose [Makhoul, J. & Schwartz, R. (1995) Proc. Natl. Acad. Sci. USA 92, 9956-9963]. Their parameters are state transition probabilities and output probability distributions associated with the transitions. The Baum algorithm that obtains the values of these parameters from speech data via their successive reestimation will be described in this paper. The recognizer wishes to find the most probable utterance that could have caused the observed acoustic index string. That probability is the product of two factors: the probability that the utterance will produce the string and the probability that the speaker will wish to produce the utterance (the language model probability). Even if the vocabulary size is moderate, it is impossible to search for the utterance exhaustively. One practical algorithm is described [Viterbi, A. J. (1967) IEEE Trans. Inf. Theory IT-13, 260-267] that, given the index string, has a high likelihood of finding the most probable utterance.
Innovative analytical strategies for the development of sensor devices and mass spectrometry methods
Resumo:
Il lavoro presentato in questa tesi di Dottorato è incentrato sullo sviluppo di strategie analitiche innovative basate sulla sensoristica e su tecniche di spettrometria di massa in ambito biologico e della sicurezza alimentare. Il primo capitolo tratta lo studio di aspetti metodologici ed applicativi di procedure sensoristiche per l’identificazione e la determinazione di biomarkers associati alla malattia celiaca. In tale ambito, sono stati sviluppati due immunosensori, uno a trasduzione piezoelettrica e uno a trasduzione amperometrica, per la rivelazione di anticorpi anti-transglutaminasi tissutale associati a questa malattia. L’innovazione di questi dispositivi riguarda l’immobilizzazione dell’enzima tTG nella conformazione aperta (Open-tTG), che è stato dimostrato essere quella principalmente coinvolta nella patogenesi. Sulla base dei risultati ottenuti, entrambi i sistemi sviluppati si sono dimostrati una valida alternativa ai test di screening attualmente in uso per la diagnosi della celiachia. Rimanendo sempre nel contesto della malattia celiaca, ulteriore ricerca oggetto di questa tesi di Dottorato, ha riguardato lo sviluppo di metodi affidabili per il controllo di prodotti “gluten-free”. Il secondo capitolo tratta lo sviluppo di un metodo di spettrometria di massa e di un immunosensore competitivo per la rivelazione di prolammine in alimenti “gluten-free”. E’ stato sviluppato un metodo LC-ESI-MS/MS basato su un’analisi target con modalità di acquisizione del segnale selected reaction monitoring per l’identificazione di glutine in diversi cereali potenzialmente tossici per i celiaci. Inoltre ci si è focalizzati su un immunosensore competitivo per la rivelazione di gliadina, come metodo di screening rapido di farine. Entrambi i sistemi sono stati ottimizzati impiegando miscele di farina di riso addizionata di gliadina, avenine, ordeine e secaline nel caso del sistema LC-MS/MS e con sola gliadina nel caso del sensore. Infine i sistemi analitici sono stati validati analizzando sia materie prime (farine) che alimenti (biscotti, pasta, pane, etc.). L’approccio sviluppato in spettrometria di massa apre la strada alla possibilità di sviluppare un test di screening multiplo per la valutazione della sicurezza di prodotti dichiarati “gluten-free”, mentre ulteriori studi dovranno essere svolti per ricercare condizioni di estrazione compatibili con l’immunosaggio competitivo, per ora applicabile solo all’analisi di farine estratte con etanolo. Terzo capitolo di questa tesi riguarda lo sviluppo di nuovi metodi per la rivelazione di HPV, Chlamydia e Gonorrhoeae in fluidi biologici. Si è scelto un substrato costituito da strips di carta in quanto possono costituire una valida piattaforma di rivelazione, offrendo vantaggi grazie al basso costo, alla possibilità di generare dispositivi portatili e di poter visualizzare il risultato visivamente senza la necessità di strumentazioni. La metodologia sviluppata è molto semplice, non prevede l’uso di strumentazione complessa e si basa sull’uso della isothermal rolling-circle amplification per l’amplificazione del target. Inoltre, di fondamentale importanza, è l’utilizzo di nanoparticelle colorate che, essendo state funzionalizzate con una sequenza di DNA complementare al target amplificato derivante dalla RCA, ne permettono la rivelazione a occhio nudo mediante l’uso di filtri di carta. Queste strips sono state testate su campioni reali permettendo una discriminazione tra campioni positivi e negativi in tempi rapidi (10-15 minuti), aprendo una nuova via verso nuovi test altamente competitivi con quelli attualmente sul mercato.
Resumo:
In this paper we present an automatic system for the extraction of syntactic semantic patterns applied to the development of multilingual processing tools. In order to achieve optimum methods for the automatic treatment of more than one language, we propose the use of syntactic semantic patterns. These patterns are formed by a verbal head and the main arguments, and they are aligned among languages. In this paper we present an automatic system for the extraction and alignment of syntactic semantic patterns from two manually annotated corpora, and evaluate the main linguistic problems that we must deal with in the alignment process.
Resumo:
Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.
Resumo:
In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.
Resumo:
Solution-processed polymer films are used in multiple technological applications. The presence of residual solvent in the film, as a consequence of the preparation method, affects the material properties, so films are typically subjected to post-deposition thermal annealing treatments aiming at its elimination. Monitoring the amount of solvent eliminated as a function of the annealing parameters is important to design a proper treatment to ensure complete solvent elimination, crucial to obtain reproducible and stable material properties and therefore, device performance. Here we demonstrate, for the first time to our knowledge, the use of an organic distributed feedback (DFB) laser to monitor with high precision the amount of solvent extracted from a spin-coated polymer film as a function of the thermal annealing time. The polymer film of interest, polystyrene in the present work, is doped with a small amount of a laser dye as to constitute the active layer of the laser device and deposited over a reusable DFB resonator. It is shown that solvent elimination translates into shifts in the DFB laser wavelength, as a consequence of changes in film thickness and refractive index. The proposed method is expected to be applicable to other types of annealing treatments, polymer-solvent combinations or film deposition methods, thus constituting a valuable tool to accurately control the quality and reproducibility of solution-processed polymer thin films.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
Folates and its derivatives occur as polyglutamates in nature. The multiplicity of forms and the generally low levels in foods makes quantitative analysis of folate a difficult task. The assay of folates from foods generally involves three steps: liberation of folates from the cellular matrix; deconjugation from the polyglutamate to the mono and di-glutamate forms; and the detection of the biological activity or chemical concentration of the resulting folates. The detection methods used are the microbiological assay relying on the turbidimetric bacterial growth of Lactobacillus rhamnosus which is by far the most commonly used method; the HPLC and LC/MS techniques and bio-specific procedures. This review attempts to describe the methods along with the merits and demerits of using each of these methods.
Resumo:
Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.
Resumo:
La richiesta di allergeni puri è in continuo aumento per scopi diagnostici, come standard per metodi di rilevamento e di quantificazione, per l'immunoterapia e per lo studio a livello molecolare dei meccanismi delle reazioni allergiche, al fine di facilitare lo sviluppo di possibili cure. In questa tesi di dottorato sono descritte diverse strategie per l’ottenimento di forme pure di non-specific Lipid Transfer Proteins (nsLTPs), le quali sono state riconosciute essere rilevanti allergeni alimentari in molti frutti e verdure comunemente consumati e sono state definite come modello di veri allergeni alimentari. Una LTP potenzialmente allergenica, non nota in precedenza, è stata isolata dalle mandorle, mentre una LTP dall’allergenicità nota contenuta nelle noci è stata prodotta mediante tecniche di DNA ricombinante. Oltre a questi approcci classici, metodi per la sintesi chimica totale di proteine sono stati applicati per la prima volta alla produzione di un allergene, utilizzando Pru p 3, la LTP prototipica e principale allergene della pesca nell'area mediterranea, come modello. La sintesi chimica totale di proteinepermette di controllarne completamente la sequenza e di studiare la loro funzione a livello atomico. La sua applicazione alla produzione di allergeni costituisce perciò un importante passo avanti nel campo della ricerca sulle allergie alimentari. La proteina Pru p 3 è stata prodotta nella sua intera lunghezza e sono necessari solo due passaggi finali di deprotezione per ottenere il target nella sua forma nativa. Le condizioni sperimentali per tali deprotezioni sono state messe a punto durante la produzione dei peptidi sPru p 3 (1-37) e sPru p 3 (38-91), componenti insieme l'intera proteina. Tecniche avanzate di spettrometria di massa sono state usate per caratterizzare tutti i composti ottenuti, mentre la loro allergenicità è stata studiata attraverso test immunologici o approcci in silico.
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.