908 resultados para elective and therapeutic ovariosalpingohisterectomy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to investigate supervisory support as a moderator of the effects of role conflict and role ambiguity on emotional exhaustion and job satisfaction. This study also examines the moderating role of supervisory support on the relationship between emotional exhaustion and job satisfaction. Data were collected from a sample of frontline hotel employees in Northern Cyprus. The aforementioned relationships were tested based on hierarchical multiple regression analysis. The results demonstrate that supervisory support mitigates the impact of role conflict on emotional exhaustion and further reveal that supervisory support reduces the effect of emotional exhaustion on job satisfaction. There is no empirical support for the rest of the hypothesized relationships. Implications of the empirical results are discussed, and future research directions are offered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the temperature to 42°C. Cytotoxicity of DOX-IR820-PGMD NPs was comparable in MES-SA but was higher in Dx5 cells compared to free DOX plus IR820 (p<0.05). The combination of hyperthermia (HT) and chemotherapy improved cytotoxicity in both cell lines. We also explored the cellular response after rapid, short-term and low thermal dose (laser/Dye/NP) induced-heating, and compared it to slow, long-term and high thermal dose cell incubator heating by investigating the reactive oxygen species (ROS) level, hypoxia-inducible factor-1&agr; (HIF-1&agr;) and vascular endothelial growth factor (VEGF) expression. The cytotoxicity of IR820-PGMD NPs after laser/Dye/NP HT resulted in higher cancer cell killing compared to incubator HT. ROS level, HIF-1&agr; and VEGF expression were elevated under incubator HT, while maintained at the baseline level under the laser/Dye/NP HT. In vivo mouse studies showed that NP formulation significantly improved the plasma half-life of IR820 after tail vein injection. Significant lower IR820 content was observed in kidney in DOX-IR820-PGMD NP treatment as compared to free IR820 treatment in our biodistribution studies (p<0.05). In conclusion, both IR820-PGMD NPs and DOX-IR820-PGMD NPs were successfully developed and used for both imaging and therapeutic purposes. Rapid and short-term laser/Dye/NP HT, with a low thermal dose, did not up-regulate HIF-1&agr; and VEGF expression, whereas slow and long-term incubator HT, with a high thermal dose, can enhance expression of both HIF-1&agr; and VEGF.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.

Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.

Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.

Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.

The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.

The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of systemically administered bacteria to target and replicate to high numbers within solid tumours is well established. Tumour localising bacteria can be exploited as biological vehicles for the delivery of nucleic acid, protein or therapeutic payloads to tumour sites and present researchers with a highly targeted and safe vehicle for tumour imaging and cancer therapy. This work aimed to utilise bacteria to activate imaging probes or prodrugs specifically within target tissue in order to facilitate the development of novel imaging and therapeutic strategies. The vast majority of existing bacterial-mediated cancer therapy strategies rely on the use of bacteria that have been genetically modified (GM) to express genes of interest. While these approaches have been shown to be effective in a preclinical setting, GM presents extra regulatory hurdles in a clinical context. Also, many strains of bacteria are not genetically tractably and hence cannot currently be engineered to express genes of interest. For this reason, the development of imaging and therapeutic systems that utilise unengineered bacteria for the activation of probes or drugs represents a significant improvement on the current gold standard. Endogenously expressed bacterial enzymes that are not found in mammalian cells can be used for the targeted activation of imaging probes or prodrugs whose activation is only achieved in the presence of these enzymes. Exploitation of the intrinsic enzymatic activity of bacteria allows the use of a wider range of bacteria and presents a more clinically relevant system than those that are currently in use. The nitroreductase (NTR) enzymes, found only in bacteria, represent one such option. Chapter 2 introduces the novel concept of utilising native bacterial NTRs for the targeted activation of the fluorophore CytoCy5S. Bacterial-mediated probe activation allowed for non-invasive fluorescence imaging of in vivo bacteria in models of infection and cancer. Chapter 3 extends the concept of using native bacterial enzymes to activate a novel luminescent, NTR activated probe. The use of luminescence based imaging improved the sensitivity of the system and provides researchers with a more accessible modality for preclinical imaging. It also represents an improvement over existing caged luciferin probe systems described to date. Chapter 4 focuses on the employment of endogenous bacterial enzymes for use in a therapeutic setting. Native bacterial enzymatic activity (including NTR enzymes) was shown to be capable of activating multiple prodrugs, in isolation and in combination, and eliciting therapeutic responses in murine models of cancer. Overall, the data presented in this thesis advance the fields of bacterial therapy and imaging and introduce novel strategies for disease diagnosis and treatment. These preclinical studies demonstrate potential for clinical translation in multiple fields of research and medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compile data on Tourette's syndrome (TS), tics and associated disorders. METHODS: A systematic review of the literature was conducted using the 5S levels of organization of healthcare research evidence (systems, summaries, synopses, syntheses, studies), based on the model described by Haynes. The search keywords were Tourette, tics and comorbidity, which were cross-referenced. Studies provided by publishers and articles being processed on July 31, 2013, were also included. RESULTS: Of all studies retrieved during the search, 64 were selected because they analyzed the epidemiology, clinical features and etiopathogenesis of TS and its comorbidities. TS is classified as a hyperkinetic movement disorder, and at least 90% of the patients have neuropsychiatric comorbidities, of which attention deficit hyperactivity and obsessive-compulsive disorders are the most common. The syndrome is clinically heterogeneous and has been associated with a dysfunction of cortico-striatal-thalamic-cortical circuits involving various neurotransmitters. Although its genetic etiology has been widely studied, other factors may be important to understand this syndrome and its associated disorders. CONCLUSIONS: TS is a neurodevelopmental disorder that results from the impact of stress factors on a vulnerable biological substrate during the critical periods of neurodevelopment. The study of TS and its comorbidities may contribute, at different levels, to the understanding of several neuropsychiatric disorders of clinical and therapeutic relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empathic communication, (i.e. emotionally engaging with a patient), is an important part of the therapeutic relationship. It has been shown to improve the health and therapeutic outcomes for patients by improving diagnosis and compliance. In the West, front-line medical professionals, including herbal medicine practitioners, put themselves at risk of burnout and compassion fatigue by giving emotionally intensive care. While treatments for compassion fatigue and burnout are available, another way forward is needed to ensure healthcare professionals do not become ill; one that will enable both patients and healthcare professionals to receive the care needed. In this paper it is argued that compassion, which is defined in this paper, involves different neural circuitry to empathy and can protect healthcare professionals from the effects of stress that can, if not addressed, lead to burnout. Traditional Buddhist meditation techniques such as loving-kindness meditation have been shown to increase compassion in non-meditative states. Short daily sessions of such mediation practices have been shown to improve compassion in a way that protects healthcare professionals from burnout.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple endocrine neoplasia syndromes have since been classified as types 1 and 2, each with specific phenotypic patterns. MEN1 is usually associated with pituitary, parathyroid and paraneoplastic neuroendocrine tumours. The hallmark of MEN2 is a very high lifetime risk of developing medullary thyroid carcinoma (MTC) more than 95% in untreated patients. Three clinical subtypesdMEN2A, MEN2B, and familial MTC (FMTC) have been defined based on the risk of pheochromocytoma, hyperparathyroidism, and the presence or absence of characteristic physical features). MEN2 occurs as a result of germline activating missense mutations of the RET (REarranged during Transfection) proto-oncogene. MEN2-associated mutations are almost always located in exons 10, 11, or 13 through 16. Strong genotype-phenotype correlations exist with respect to clinical subtype, age at onset, and aggressiveness of MTC in MEN2. These are used to determine the age at which prophylactic thyroidectomy should occur and whether screening for pheochromocytoma or hyperparathyroidism is necessary. Specific RET mutations can also impact management in patients presenting with apparently sporadic MTC. Therefore, genetic testing should be performed before surgical intervention in all patients diagnosed with MTC. Recently, Pellegata et al. have reported that germline mutations in CDKN1B can predispose to the development of multiple endocrine tumours in both rats and humans and this new MEN syndrome is named MENX and MEN4, respectively. CDKN1B. A recent report showed that in sporadic MTC, CDKN1B V109G polymorphism correlates with a more favorable disease progression than the wild-type allele and might be considered a new promising prognostic marker. New insights on MEN syndrome pathogenesis and related inherited endocrine disorders are of particular interest for an adequate surgical and therapeutic approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gallstone ileus is a rare complication of cholelithiasis and it represents the 1-4% of small intestinal mechanical obstruction. Gallstone is generally wedged in the terminal ileum, even if unusual locations have been described. The literature reports a very high morbidity and mortality, often because misdiagnosis or delayed diagnosis. There is no unique opinion in literature about the choice between one-stage and two-stage surgery. We report a clinical case that summarizes the diagnostic and therapeutic difficulties of gallstone ileus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compile data on Tourette's syndrome (TS), tics and associated disorders. METHODS: A systematic review of the literature was conducted using the 5S levels of organization of healthcare research evidence (systems, summaries, synopses, syntheses, studies), based on the model described by Haynes. The search keywords were Tourette, tics and comorbidity, which were cross-referenced. Studies provided by publishers and articles being processed on July 31, 2013, were also included. RESULTS: Of all studies retrieved during the search, 64 were selected because they analyzed the epidemiology, clinical features and etiopathogenesis of TS and its comorbidities. TS is classified as a hyperkinetic movement disorder, and at least 90% of the patients have neuropsychiatric comorbidities, of which attention deficit hyperactivity and obsessive-compulsive disorders are the most common. The syndrome is clinically heterogeneous and has been associated with a dysfunction of cortico-striatal-thalamic-cortical circuits involving various neurotransmitters. Although its genetic etiology has been widely studied, other factors may be important to understand this syndrome and its associated disorders. CONCLUSIONS: TS is a neurodevelopmental disorder that results from the impact of stress factors on a vulnerable biological substrate during the critical periods of neurodevelopment. The study of TS and its comorbidities may contribute, at different levels, to the understanding of several neuropsychiatric disorders of clinical and therapeutic relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphodiesterase 4 (PDE4) family are cAMP specific phosphodiesterases that play an important role in the inflammatory response and is the major PDE type found in inflammatory cells. A significant number of PDE4 specific inhibitors have been developed and are currently being investigated for use as therapeutic agents. Apremilast, a small molecule inhibitor of PDE 4 is in development for chronic inflammatory disorders and has shown promise for the treatment of psoriasis, psoriatic arthritis as well as other inflammatory diseases. It has been found to be safe and well tolerated in humans and in March 2014 it was approved by the US food and drug administration for the treatment of adult patients with active psoriatic arthritis. The only other PDE4 inhibitor on the market is Roflumilast and it is used for treatment of respiratory disease. Roflumilast is approved in the EU for the treatment of COPD and was recently approved in the US for treatment to reduce the risk of COPD exacerbations. Roflumilast is also a selective PDE4 inhibitor, administered as an oral tablet once daily, and is thought to act by increasing cAMP within lung cells. As both (Apremilast and Roflumilast) compounds selectively inhibit PDE4 but are targeted at different diseases, there is a need for a clear understanding of their mechanism of action (MOA). Differences and similarity of MOA should be defined for the purposes of labelling, for communication to the scientific community, physicians, and patients, and for an extension of utility to other diseases and therapeutic areas. In order to obtain a complete comparative picture of the MOA of both inhibitors, additional molecular and cellular biology studies are required to more fully elucidate the signalling mediators downstream of PDE4 inhibition which result in alterations in pro- and anti-inflammatory gene expression. My studies were conducted to directly compare Apremilast with Roflumilast, in order to substantiate the differences observed in the molecular and cellular effects of these compounds, and to search for other possible differentiating effects. Therefore the main aim of this thesis was to utilise cutting-edge biochemical techniques to discover whether Apremilast and Roflumilast work with different modes of action. In the first part of my thesis I used novel genetically encoded FRET based cAMP sensors targeted to different intracellular compartments, in order to monitor cAMP levels within specific microdomains of cells as a consequence of challenge with Apremilast and Roflumilast, which revealed that Apremilast and Roflumilast do regulate different pools of cAMP in cells. In the second part of my thesis I focussed on assessing whether Apremilast and Roflumilast cause differential effects on the PKA phosphorylation state of proteins in cells. I used various biochemical techniques (Western blotting, Substrate kinase arrays and Reverse Phase Protein array and found that Apremilast and Roflumilast do lead to differential PKA substrate phosphorylation. For example I found that Apremilast increases the phosphorylation of Ribosomal Protein S6 at Ser240/244 and Fyn Y530 in the S6 Ribosomal pathway of Rheumatoid Arthritis Synovial fibroblast and HEK293 cells, whereas Roflumilast does not. This data suggests that Apremilast has distinct biological effects from that of Roflumilast and could represent a new therapeutic role for Apremilast in other diseases. In the final part of my thesis, Phage display technology was employed in order to identify any novel binding motifs that associate with PDE4 and to identify sequences that were differentially regulated by the inhibitors in an attempt to find binding motifs that may exist in previously characterised signalling proteins. Petide array technology was then used to confirm binding of specific peptide sequences or motifs. Results showed that Apremilast and Roflumilast can either enhance or decrease the binding of PDE4A4 to specific peptide sequences or motifs that are found in a variety of proteins in the human proteome, most interestingly Ubiquitin-related proteins. The data from this chapter is preliminary but may be used in the discovery of novel binding partners for PDE4 or to provide a new role for PDE inhibition in disease. Therefore the work in this thesis provides a unique snapshot of the complexity of the cAMP signalling system and is the first to directly compare action of the two approved PDE4 inhibitors in a detailed way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a case of a postmenopausal woman diagnosed with an ovarian mass containing thyroid follicles and foci of papillary thyroid carcinoma during pathological examination. This patient referred having had a metachronous thyroid malignancy 10 years before. The differential diagnosis between a thyroid malignancy arising from a struma ovarii and a metastatic ovarian tumor originating from thyroid-cancer is challenging. Struma ovarii should be considered when thyroid components are the predominant element or when thyroid malignant tissue is identified within an ovarian lesion. Thyroid carcinoma arising from a struma ovarii is reported to occur in a minority of cases. Of these, papillary carcinoma is the most frequent subtype encountered. Regarding primary thyroid carcinomas, papillary carcinomas have a lower metastatic potential when compared to follicular carcinomas, and most of the metastases occur in the cervical lymph nodes. Ovarian metastases are exceedingly rare and generally associated with widespread disease. However, they must be considered in the presence of previous history of malignant thyroid carcinoma. The authors review the main clinical, imaging and therapeutic aspects of both these entities and present the most likely diagnosis.