998 resultados para eBook in Pharmacology
Resumo:
This article reports the spread of bla(KPC-2) in the Sao Paulo and Rio de Janeiro states, facilitated by globally spread K. pneumoniae clonal complex 258 (CC258) clones (ST258, ST11, and ST437) and a diversity of plasmids (IncFII, IncN, and IncL/M, two untypeable plasmids carrying Tn4401a or Tn4401b) successfully disseminated among species of the Enterobacteriaceae (Enterobacter cloacae, Serratia marcescens, and Citrobacter freundii). It also constitutes the first description of sequence type 258 (ST258) in Brazil, which was associated with a nosocomial hospital outbreak in Ribeirao Preto city.
Resumo:
The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Metoprolol is a beta-blocker and its racemic mixture is used for the treatment of hypertension. In the present study we investigated the influence of CYP2D and CYP3A on the stereoselective metabolism of metoprolol in rats. Male Wistar rats (n = 6 per group) received racemic metoprolol (15 mg/kg) orally, with or without pretreatment with the CYP inhibitor ketoconazole (50 mg/kg), cimetidine (150 mg/kg), or quinidine (80 mg/kg). Blood samples were collected up to 48 h after metoprolol administration. The plasma concentrations of the stereoisomers of metoprolol, O-demethylmetoprolol (ODM), alpha-hydroxymetoprolol (OHM) (Chiralpak(R) AD column), and metoprolol acidic metabolite (AODM) (Chiralcel(R) OD-R column) were determined by HPLC using fluorescence detection (lambda(exc) = 229 nm; lambda(em) = 298 nm). CYP3A inhibition by ketoconazole reduced the plasma concentrations of ODM and AODM and favored the formation of OHM. CYP2D and CYP3A inhibition by cimetidine reduced the plasma concentrations of OHM and AODM and favored the formation of ODM. The inhibition of CYP2D by quinidine reduced the plasma concentrations of OHM and favored the formation of ODM. In conclusion, the results suggest that CYP3A is involved in the formation of ODM and CYP2D is involved in the formation of AODM. Chirality 21:886-893, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The pharmacokinetics of cyclophosphamide (CYC) enantiomers were evaluated in patients with lupus nephritis distributed in 2 groups according to creatinine clearance: group 1 (90.6-144.6 mL/min/1.73 m(2)) and group 2 (42.8-76.4 mL/min/ 1.73 m(2)). All patients were treated with 0.75 to 1.3 g of racemic CYC as a 2-hour infusion and with 1 mg intravenous midazolam as a drug-metabolizing marker. CYC enantiomers and midazolam concentrations in plasma were measured by liquid chromatography/tandem mass spectrometry (LC/MS/MS). The following differences (Wilcoxon test, P <= .05) were observed between the (S)-(-) and (R)-(+) enantiomers: AUC(0-infinity) 152.41 vs 129.25 mu g.h/mL, CL 3.28 vs 3.89 L/h, Vd 31.38 vs 29.74 L, and t(1/2) 6.79 vs 5.56 h for group 1 and AUC(0-infinity) 167.20 vs 139.08 mu g.h/mL, CL 2.99 vs 3.59 L/h, and t(1/2) 6.15 vs 4.99 h for group 2. No differences (Mann test, P <= .05) were observed between groups 1 and 2 in the pharmacokinetic parameters of both enantiomers. No significant relationship was observed between midazolam clearance (2.92-16.40 mL/min.kg) and clearance of each CYC enantiomer. In conclusion, CYC kinetic disposition is enantioselective, resulting in higher exposures of the (S)-(-) enantiomer in lupus nephritis patients, and the pharmacokinetic parameters of both enantiomers are not altered by the worsening of renal condition.
Resumo:
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and P-hydroxy-mexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak (R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX. Chirality 21:648-656, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Hypertension and dyslipidemia are independent risk factors for cardiovascular mortality and are frequently present in the same patient. Fluvastatin (FV), used to reduce cholesterol levels, and lercanidipine (LER), used to control blood pressured are marketed as racemic mixtures. Therapeutic activities are 30-fold higher for (+)-3R,5S-FV and 100- to 200-fold higher for S-LER compared with their respective antipodes. The present study describes the enantioselective pharmacokinetic interaction between LER and FV in healthy volunteers. A crossover randomized study was conducted in 3 phases on 8 volunteers treated with a single oral racemic dose of LER (20 mg) or FV (40 mg) or LER plus FV. Serial blood samples were collected from 0 to 24 hours. Plasma concentrations of the LER and FV enantiomers were determined by liquid chromatography/tandem mass spectrometry, and pharmacokinetic parameters were evaluated using the WinNonlin software. The Wilcoxon and Mann-Whitney tests (P < .05) were used to analyze enantiomer ratios and the pharmacokinetic drug interaction. Data are expressed as medians. In monotherapy, the kinetic disposition of both FV and LER was enantioselective. AUC values were significantly higher for (-)-3S,5R-FV than for (+)-3R,5S-FV (358.20 vs 279.68 ng.h/mL) and for S-LER compared with R-LER (13.90 vs 11.88 ng.h/mL). The pharmacokinetic parameters of FV were not enantioselective when combined with LER (AUC: (-)-3S,5R-FV: 325.21; (+)-3R,5S-FV: 316.44 ng.h/mL). There was a significant reduction in S-LER (8.06 vs 13.90 ng.h/mL) and R-LER (6.76 vs 11.88 ng.h/mL) AUC values when FV was coadministered. In conclusion, the interaction between FV-LER might be clinically relevant because AUC values of (+)-3R,5S-FV were increased when LER was coadministered, and AUC values of the 2 LER enantiomers were reduced when FV was coadministered.
Resumo:
Aim To evaluate gastrointestinal motility during 5-fluorouracil (5-FU)-induced intestinal mucositis. Materials and methods Wistar rats received 5-FU (150 mg kg(-1), i.p.) or saline. After the 1st, 3rd, 5th, 15th and 30th day, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage, apoptotic and mitotic indexes, MPO activity and GSH concentration. In order to study gastrointestinal motility, on the 3rd or 15th day after 5-FU treatment, gastric emptying in vivo was measured by scintilographic method, and stomach or duodenal smooth muscle contractions induced by CCh were evaluated in vitro. Results On the third day of treatment, 5-FU induced a significant villi shortening, an increase in crypt depth and intestinal MPO activity and a decrease in villus/crypt ratio and GSH concentration. On the first day after 5-FU there was an increase in the apoptosis index and a decrease in the mitosis index in all intestinal segments. After the 15th day of 5-FU treatment, a complete reversion of all these parameters was observed. There was a delay in gastric emptying in vivo and a significant increase in gastric fundus and duodenum smooth muscle contraction, after both the 3rd and 15th day. Conclusions 5-FU-induced gastrointestinal dysmotility outlasts intestinal mucositis.
Resumo:
Citalopram (CITA) is available as a racemic mixture or as (+)-(S)-CITA. In humans, CITA is metabolized to demethylcitalopram (DCITA) by CYP2C19, CYP2D6, and CYP3A and to didemethylcitalopram by CYP2D6. There are no data regarding the enzymes involved in CITA and DCITA metabolism in rats. The present study investigated the influence of CYP inhibitors on the enantioselective metabolism of CITA in rats. Male Wistar rats (n = 6) received a single dose of 20 mg.kg(-1) CITA after pretreatment with 80 mg.kg(-1) quinidine, 10 mg.kg(-1) fluvoxamine, 50 mg.kg(-1) ketoconazole, or vehicle (control). Blood samples were collected up to 20 h after CITA administration. The CITA and DCITA enantiomers were analyzed by LC-MS/MS using a Chiralcel OD-R column. The kinetic disposition of CITA was enantioselective in rats (AUC(S/R) ratio = 0.4). Coadministration with quinidine resulted in non-enantioselective inhibition of the metabolism of CITA. Coadministration with fluvoxamine or ketoconazole, however, inhibited only the metabolism of (+)-(S)-CITA, but not of (-)-(R)-CITA when the racemic drug was administered to rats.
Resumo:
Objective This study compares midazolam with omeprazole as marker drugs for the evaluation of CYP3A activity in nine healthy self-reported white Brazilian volunteers. Methods Omeprazole was also used to evaluate the CYP2C19 phenotype. The volunteers received p.o. 20 mg omeprazole, and blood samples were collected 3.5 h after drug administration. After a washout period of 10 days, the volunteers received p.o. 15 mg midazolam maleate, and serial blood samples were collected up to 6 h after administration of the drug. CYP2C19 was genotyped for the allelic variants CYP2C19*1, CYP2C19*2, CYP2C19*3, and CYP2C19*17. Analysis of omeprazole, hydroxyomeprazole, omeprazole sulfone, and midazolam in plasma was carried out by LC-MS/MS. Results The volunteers genotyped as CYP2C19*1*17, CYP2C19*17*17, CYP2C19*1*1 (n=8), or CYP2C19*17*2 (n=1) presented a median hydroxylation index (omeprazole/hydroxyomeprazole) of 1.35, indicating that all of them were extensive metabolizers of CYP2C19. The volunteers (n=9) presented a 0.12 log of the omeprazole/sulfone ratio and a median oral clearance of midazolam of 17.89 ml min(-1) kg(-1), suggesting normal CYP3A activity. Conclusions Orthogonal regression analysis between midazolam clearance and log of the plasma concentrations of the omeprazole/omeprazole sulfone ratio (R=-0.7544, P < 0.05) suggests that both midazolam and omeprazole can be used as markers of CYP3A activity in the population investigated.
Resumo:
Chronic ethanol Consumption and hypertension are related. In the current study we investigated whether changes in reactivity of the mesenteric arterial bed could account for the increased blood pressure associated with chronic ethanol intake. Changes in reactivity to phenylephrine and acetylcholine were investigated in the perfused mesenteric bed from rats treated with ethanol for 2 or 6 weeks and their age-matched controls. Mild hypertension was observed in chronically ethanol-treated rats. Treatment of rats for 6 weeks induced an increase in the contractile response of endothelium-intact mesenteric bed to phenylephrine, but not denuded rat mesenteric bed. The phenylephrine-induced increase in perfusion pressure was not altered after 2 weeks` treatment with ethanol. Moreover, acetylcholine-induced endothelium-dependent relaxation was reduced by ethanol treatment for 6 weeks, but not 2 weeks. Pre-treatment with indometacin, a cyclooxygenase inhibitor, reduced the maximum effect induced by phenylephrine (E-max) in endothelium-intact mesenteric bed from both control and ethanol-treated rats. No differences in the E-max values for phenylephrine were observed between groups in the presence of indometacin. L-NNA, a nitric oxide (NO) synthase (NOS) inhibitor, increased the E-max for phenylephrine in endothelium-intact mesenteric bed from control rats but not from ethanol-treated rats. Levels of endothelial NOS (eNOS) mRNA were not altered by chronic ethanol consumption. However, chronic ethanol intake strongly reduced eNOS protein levels in the mesenteric bed. This study shows that chronic ethanol consumption increases blood pressure and alters the reactivity of the mesenteric bed. Moreover, the increased vascular response to phenylephrine observed in the mesenteric bed is maintained by two mechanisms: an increased release of endothelial-derived vasoconstrictor prostanoids and a reduced modulatory action of endothelial NO, which seems to be associated with reduced post-transcriptional expression of eNOS.
Resumo:
center dot Pharmacokinetic interactions between albendazole and praziquantel are based on plasma concentrations of the enantiomeric mixture of both drugs with contradictory data, although the antiparasitic activity arises from (-)-(R)-praziquantel and (+)-albendazole sulfoxide. WHAT THIS STUDY ADDS center dot The pharmacokinetic interaction between albendazole and praziquantel is enantioselective. Praziquantel increased the plasma concentrations of (+)-albendazole sulfoxide more than those of (-)-albendazole sulfoxide and the administration of albendazole did not change the kinetic disposition of (+)-(S)-praziquantel, but increased the plasma concentration of (-)-(R)-praziquantel. AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0-48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P < 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 mu g ml-1 h), (-)-ASOX by 358% (0.14 vs. 0.50 mu g ml-1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 mu g ml-1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (-)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (-)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 mu g ml-1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (-)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination.
Resumo:
center dot Citalopram (CITA) pharmacokinetics are enantioselective in healthy volunteers and the metabolism of (+)-(S)-CITA to (+)-(S)-DCITA is dependent on CYP2C19. Omeprazole is a potent CYP2C19 inhibitor. WHAT THIS STUDY ADDS center dot This study indicates that omeprazole induces a loss of enantioselectivity in the CITA pharmacokinetics because of the selective inhibition of (+)-(S)-CITA metabolism. AIM The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (-)-(R)-CITA enantiomers in healthy volunteers. METHODS In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min-1 kg-1 received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day-1 for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel (R) OD-R column. RESULTS The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (-)-(R)-CITA [AUC S : R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S : R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. CONCLUSIONS The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been established.
Resumo:
Aripiprazole is a unique antipsychotic that seems to act as a partial agonist at dopamine D2-receptors, contrasting with other drugs in this class, which are silent antagonists. Aripiprazole may also bind to serotonin receptors. Both neurotransmitters may play major roles in aversion-, anxiety-and panic-related behaviours. Thus, the present work tested the hypothesis that this antipsychotic could also have anti-aversive properties. Male Wistar rats received injections of aripiprazole (0.1-10 mg/kg) and were tested in the open field, in the elevated plus and T mazes (EPM and ETM, respectively) and in a contextual fear conditioning paradigm. Aripiprazole (1mg/kg) increased the percentage of entries onto the open arms of the EPM and attenuated escape responses in the ETM. In the latter model, the dose of 0.1 mg/kg also decreased the latency to leave the enclosed arm, suggesting anxiolytic- and panicolytic-like properties. This dose also decreased the time spent in freezing in a contextual fear conditioning. No significant motor effects were observed at these doses. The present data support the hypothesis that aripiprazole could inhibit anxiety-related responses. Acting as a partial agonist at dopamine receptors, this drug could effectively treat schizophrenia and, in contrast with most antipsychotic drugs, alleviate aversive states.
Resumo:
Aims: The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. Main methods: With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. Key findings: The pharmacologically reversible ablation of the dbB with local microinjection of CoCl(2) significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. Significance: The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the VAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.