927 resultados para cryptographic pairing computation, elliptic curve cryptography
Resumo:
The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
The present article describes a working or combined calibration curve in laser-induced breakdown spectroscopic analysis, which is the cumulative result of the calibration curves obtained from neutral and singly ionized atomic emission spectral lines. This working calibration curve reduces the effect of change in matrix between different zone soils and certified soil samples because it includes both the species' (neutral and singly ionized) concentration of the element of interest. The limit of detection using a working calibration curve is found better as compared to its constituent calibration curves (i.e., individual calibration curves). The quantitative results obtained using the working calibration curve is in better agreement with the result of inductively coupled plasma-atomic emission spectroscopy as compared to the result obtained using its constituent calibration curves.
Resumo:
A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.
Resumo:
The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.
Quick, Decentralized, Energy-Efficient One-Shot Max Function Computation Using Timer-Based Selection
Resumo:
In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.
Resumo:
Aims. In this work we search for the signatures of low-dimensional chaos in the temporal behavior of the Kepler-field blazar W2R 1946+42. Methods. We use a publicly available, similar to 160 000-point-long and mostly equally spaced light curve of W2R 1946+42. We apply the correlation integral method to both real datasets and phase randomized surrogates. Results. We are not able to confirm the presence of low-dimensional chaos in the light curve. This result, however, still leads to some important implications for blazar emission mechanisms, which are discussed.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
With increasing energy demand, it necessitates to generate and transmit the electrical power with minimal losses. High voltage power transmission is the most economical way of transmitting bulk power over long distances. Transmission insulator is one of the main components used as a mechanical support and to electrically isolate the conductor from the tower. Corona from the hardware and conductors can significantly affect the performance of the polymeric insulators. In the present investigation a methodology is presented to evaluate the corona performance of the polymeric shed material under different environment conditions for both ac and dc excitation. The results of the comprehensive analysis on various polymeric samples and the power released from the corona electrode for both the ac and dc excitation are presented. Some interesting results obtained from the chemical analysis confirmed the presence of nitric acid species on the treated sample which in long term will affect the strength of the insulator, also the morphological changes were found to be varying for different experimental conditions. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.
Resumo:
In this paper, a pressure correction algorithm for computing incompressible flows is modified and implemented on unstructured Chimera grid. Schwarz method is used to couple the solutions of different sub-domains. A new interpolation to ensure consistency between primary variables and auxiliary variables is proposed. Other important issues such as global mass conservation and order of accuracy in the interpolations are also discussed. Two numerical simulations are successfully performed. They include one steady case, the lid-driven cavity and one unsteady case, the flow around a circular cylinder. The results demonstrate a very good performance of the proposed scheme on unstructured Chimera grids. It prevents the decoupling of pressure field in the overlapping region and requires only little modification to the existing unstructured Navier–Stokes (NS) solver. The numerical experiments show the reliability and potential of this method in applying to practical problems.
Resumo:
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.
Resumo:
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.