975 resultados para conjugate meningococcal vaccines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study was done to evaluate the cost-effectiveness of a national rotavirus vaccination programme in Brazilian children from the healthcare system perspective. A hypothetical annual birth-cohort was followed for a five-year period. Published and national administrative data were incorporated into a model to quantify the consequences of vaccination versus no vaccination. Main outcome measures included the reduction in disease burden, lives saved, and disability-adjusted life-years (DALYs) averted. A rotavirus vaccination programme in Brazil would prevent an estimated 1,804 deaths associated with gastroenteritis due to rotavirus, 91,127 hospitalizations, and 550,198 outpatient visits. Vaccination is likely to reduce 76% of the overall healthcare burden of rotavirus-associated gastroenteritis in Brazil. At a vaccine price of US$ 7-8 per dose, the cost-effectiveness ratio would be US$ 643 per DALY averted. Rotavirus vaccination can reduce the burden of gastroenteritis due to rotavirus at a reasonable cost-effectiveness ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network. Copyright (c) 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduction of the natural sesquiterpene lactones furanoheliangolides with Stryker's reagent is an effective process for producing eremantholides through a biomimetic pathway. Other reduction products are also formed. Oxygenated functions at C-15 of the furanoheliangolide produce an increase in the velocities of the reactions and reduce the chemoselectivity of the reagent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results: We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 mu g of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-gamma and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 mu g). Conclusion: Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A meso-tetrakis(pentafluorophenyl)-chlorin with the reduced pyrrole ring linked to an isoxazolidine ring (FC) has been conjugated to four beta-cyclodextrins (CDFC). The CDFC exhibits excellent water solubility and is a potent photosensitizer towards proliferating NCTC 2544 human keratinocytes. The study by conventional steady state absorption and fluorescence spectroscopies and by time-resolved femto- and nanosecond laser flash spectroscopies suggests that in ethanol and pH 7 buffer the beta-cyclodextrins embed the highly hydrophobic tetrakis(pentafluorophenyl)-chlorin macrocycle and strongly interact with the chlorin rings in the singlet and triplet manifolds. In these solvents, femtosecond spectroscopy suggests that the conjugate undergoes a rapid relaxation in the upper excited singlet states induced by photochemical and/or conformation change(s) at a rate of about 5 ps(-1) to fluorescent states whose lifetime is similar to 8 ns. This interaction is destroyed upon addition of Triton X100 to buffer. Both FC and CDFC strongly fluoresce (Phi(F) similar to 0.5) in micelles. Similar behavior is observed at the triplet level. In ethanol and water, the initial transient triplet state absorbance decays within 1-3 mu s yielding a longer lived triplet with spectral properties indistinguishable from that of original difference absorbance spectra. The determination of the molar absorbance in the 440-460 nm region (similar to 35 000 M(-1) cm(-1)) leads to an estimate of similar to 0.2 for the triplet formation quantum yield of FC in toluene and of FC and CDFC in Triton X100 micelles. Quenching of the CDFC triplets by dioxygen in buffer produces (1)O(2) in a good yield consistent with the effective photocytotoxicity of the chlorin-cyclodextrins conjugate towards cultured NCTC 2544 human keratinocytes. By contrast, FC which aggregates in buffer produces little if any (1)O(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-infected patients are at risk for vaccine-preventable infections. The Brazilian National Immunization Program provided recommendations for this population. However, the vaccine coverage reached by this program is unknown. This study aimed at evaluating the vaccine coverage of HIV-infected adults followed at Hospital das Clinicas, University of Sao Paulo School of Medicine. Data were collected on age, gender, mode of HIV transmission, Centers for Disease Classification 1993 classification (CDC/93), antiretrovirals, CD4 count, HIV viral load, and immunization charts, from April 2003 to August 2004. We interviewed 144 randomly selected patients, 74% male; mean age, 39.95 years; CDC classification: A, 40.6%; B, 19.6%; and C, 39.9%. Most of patients were undergoing highly active antiretroviral therapy (HAART; 86.8%). Mean CD4 count 442.6 cells/mm(3). Viral load less than 400 copies per milliliter in 59.4% of patients. Only 36.1% of patients were adequately immunized for diphtheria/tetanus, 54.9% for pneumococcus, 24.3% for flu, and 76.9% for hepatitis B. In relation to live attenuated vaccines, 5 patients received measles, mumps, and rubella vaccine and 7 patients yellow fever vaccine. Two patients were vaccinated against yellow fever despite CD4 less than 200 cell/mm(3). We verified poor vaccine coverage in HIV-infected patients. Vaccination campaigns and incorporation of vaccine rooms in sexually transmitted disease (STD)/AIDS clinics could improve this situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Early age at first delivery has been identified as a risk factor for high-risk HPV-type infection and cervical cancer development. Methods A cross-sectional study was carried out in a large public maternity hospital in Sao Paulo, Brazil. During June 2006 to February 2007, 301 women aged 15-24 years who gave birth to their first child were recruited between 43 and 60 days after delivery. Detection of HPV DNA in cervical specimens was performed using a standardised PCR protocol with PGMY09/11 primers. The association of selected factors with HPV infection was assessed by using a Generalised Linear Model. Results HPV DNA was detected in 58.5% (95% CI 52.7% to 64.0%) of the enrolled young women. The most common types of HPV found were: HPV16, HPV51, HPV52, HPV58 and HPV71. The overall prevalence of HPV types targeted by the HPV prophylactic vaccines was: HPV 16-12.0%, HPV 18-2.3% and HPV 6 and 11 4.3%. In the multivariate analysis, only age (inversely, p for trend=0.02) and smoking habits were independently associated with HPV infection. Conclusions The findings show that these young primiparous women had high cervical HPV prevalence, suggesting that this is a high-risk group for cervical cancer development. Nevertheless, 17.3% were positive for any of the four HPV types included in HPV vaccines (HPV6, 11, 16 or 18), with 13.3% positive for HPV 16 or 18 and only 1.0% having both vaccine related-oncogenic HPV types. Thus, young primiparous women could benefit from catch-up HPV vaccination programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, ""promiscuous"" ( multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II-transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical trials using dendritic cells (DCs) to treat cancer patients have generated promising results in recent years. However, even simple aspects of this therapy are still not well understood, including the storage and distribution of manufactured vaccines. These processes are essential and must be elucidated in order to reduce costs. We evaluated the effects of different storage conditions on vaccine functionality using mixed lymphocyte reaction (MLR). Vaccine storage at 4 degrees C for up to 72 h had no significant effect on vaccine activity. Shipping to distant places is possible, if vaccines are kept at 4 degrees C and used up to 3 days after manufacture date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFN gamma/TNF alpha, IFN gamma/IL-2 or TNF alpha/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFN gamma/TNF alpha/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses-elicited by other HIV immunogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R. sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences. Results: Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained similar to 56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as ""unknown function"". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library. Conclusions: Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H(2)O(2), NO, IL-12, and IFN-gamma content is detected in the organs of immunized mice. On the other hand, TNF-alpha and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-beta are also higher in the organs of immunized mice. A greater incidence of CD4(+) and CD8(+) T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4(+)CD25(+)Foxp3(+) T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.