958 resultados para coastal plains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past one hundred and fifty years, the landscape and ecosystems of the Pacific Northwest coastal region, already subject to many variable natural forces, have been profoundly affected by human activities. In virtually every coastal watershed from the Strait of Juan de Fuca to Cape Mendocino, settlement, exploitation and development of resou?-ces have altered natural ecosystems. Vast, complex forests that once covered the region have been largely replaced by tree plantations or converted to non-forest conditions. Narrow coastal valleys, once filled with wetlands and braided streams that tempered storm runoff and provided salmon habitat, were drained, filled, or have otherwise been altered to create land for agriculture and other uses. Tideflats and saltmarshes in both large and small estuaries were filled for industrial, commercial, and other urban uses. Many estuaries, including that of the Columbia River, have been channeled, deepened, and jettied to provide for safe, reliable navigation. The prodigious rainfall in the region, once buffered by dense vegetation and complex river and stream habitat, now surges down sirfiplified stream channels laden with increased burdens of sediment and debris. Although these and many other changes have occurred incrementally over time and in widely separated areas, their sum can now be seen to have significantly affected the natural productivity of the region and, as a consequence, changed the economic structure of its human communities. This activity has taken place in a region already shaped by many interacting and dynamic natural forces. Large-scale ocean circulation patterns, which vary over long time periods, determine the strength and location of currents along the coast, and thus affect conditions in the nearshore ocean and estuaries throughout the region. Periodic seasonal differences in the weather and ocean act on shorter time scales; winters are typically wet with storms from the southwest while summers tend to be dry with winds from the northwest. Some phenomena are episodic, such as El Nifio events, which alter weather, marine habitats, and the distribution and survival of marine organisms. Other oceanic and atmospheric changes operate more slowly; over time scales of decades, centuries, and longer. Episodic geologic events also punctuate the region, such as volcanic eruptions that discharge widespread blankets of ash, frequent minor earthquakes, and major subduction zone earthquakes each 300 to 500 years that release accumulated tectonic strain, dropping stretches of ocean shoreline, inundating estuaries and coastal valleys, and triggering landslides that reshape stream profiles. While these many natural processes have altered, sometimes dramatically, the Pacific Northwest coastal region, these same processes have formed productive marine and coastal ecosystems, and many of the species in these systems have adapted to the variable environmental conditions of the region to ensure their long-term survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities for scientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation). This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What Are ~umulat iveE ffects? Coastal managers now recognize that many of the most serious resource degradation problems have built up gradually as the combined outcome of numerous actions and choices which alone may have had relatively minor impacts. For example, alteration of essential habitat through wetland loss, degradation of water quality from nonpoint source pollution, and changes in salinity of estuarine waters from water diversion projects can be attributed to numerous small actions and choices. These incremental losses have broad spatial and temporal dimensions, resulting in the gradual alteration of structure and functioning of biophysical systems. In the environmental management field, the term "cumulative effects" is generally used to describe this phenomenon of changes in the environment that result from numerous, small-scale alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This compilation of references to works which synthesize information on coastal topics is intended to be useful to resource managers in decision making processes. However, the utility must be understand in terms of its limited coverage. The bibliography is not inclusive of all the published materials on the topics selected. Coverage is clearly defined in the following paragraph. The time span of the bibliography is limited to references that were published from I983 to 1993, except for a last-minute addition of a few 1994 publications. All searches were done in mid- to late-1993. The bibliography was compiled from searches done on the following DIALOG electronic databases: Aquatic Sciences and Fisheries Abstracts, BlOSlS Previews, Dissertation Abstracts Online, Life Sciences Collection, NTlS (National Technical lnformation Service), Oceanic Abstracts, Pollution Abstracts, SciSearch, and Water Resources Abstracts. In addition, two NOAA electronic datases were searched: the NOAA Library and lnformation Catalog and the NOAA Sea Grant Depository Database. Synthesis of information is not an ubiquitous term used in database development. In order to locate syntheses of required coastal topics, 89 search terms were used in combinations which required 10 searches from each file. From the nearly 6,000 citations which resulted from the electronic searches, the most appropriate were selected to produce this bibliography. The document was edited and indexed using Wordperfect software. When available, an abstract has been included. Every abstract was edited. The bibliography is subdivided into four main topics or sections: ecosystems, coastal water body conditions, natural disasters, and resource management. In the ecosystems section, emphasis is placed on organisms in their environment on the major coastlines of the U.S. In the second section, coastal water body conditions, the environment itself is emphasized. References were found for the Alaskan coast, but none were found for Hawaii. The third section, on natural disasters, emphasizes environmental impacts resulting from natural phenomena. Guidelines, planning and management reports, modelling documents, strategic and restoration plans, and environmental economics related to sustainability are included in the fourth section, resource management. Author, geographic, and subject indices indices are provided. The authors would like to thank Victor Omelczenko and Terry Seldon of the NOAA Sea Grant Office for access to and training on the NOAA Sea Grant Depository Database. We are grateful also to Dorothy Anderson, Philip Keavey, and Elizabeth Petersen who reviewed the draft document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In August 2011, the NOAA National Ocean Service (NOS) conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters of the continental shelf in the northwestern Gulf of Mexico (GOM). The original sampling design included 50 randomly selected sites from the Mississippi River delta to the U.S./Mexican border, representing a total area of 111,162 square kilometers; however, vessel failures and inclement weather precluded sampling at 16 sites in the western-most part of the study region. Sampling was completed at the remaining 34 sites in offshore waters between the Mississippi River delta and Freeport, Texas, representing an estimated 75,591 square kilometers. Field sampling followed standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Water depths ranged from 13 – 83 m throughout the study area. About 9 % of the area had sediments composed of sands (< 20 % silt+clay), 47 % of the area was composed of intermediate muddy sands (20 – 80 % silt+clay), and 44 % of the sampled area consisted of mud (> 80 % silt+clay). About 50 % of the area (represented by 17 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all of the sites sampled had levels of TOC < 20 mg/g, well below the range associated with potentially harmful effects to benthic fauna (> 50 mg/g). Surface salinities ranged from 23.4 – 36.5 psu, with salinity generally increasing with distance west of the Mississippi River delta. Bottom salinities varied between 31.1 and 36.5 psu, with lowest values occurring at shallow, inner-shelf stations. Surface-water temperatures varied between 29.8 and 31.5 ºC, while near-bottom waters ranged in temperature from 19.4 – 31 ºC. An index of density stratification (Δσt) indicated that portions of coastal shelf waters in the northwestern GOM at the time of this sampling were strongly stratified. Values of Δσt at 19 of the 34 sites sampled in this study (56 % of the study area) ranged from 2.2 to 12.4, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2). Stratification was strongest close to the Mississippi River delta, and decreased with distance west of the delta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intersection of social and environmental forces is complex in coastal communities. The well-being of a coastal community is caught up in the health of its environment, the stability of its economy, the provision of services to its residents, and a multitude of other factors. With this in mind, the project investigators sought to develop an approach that would enable researchers to measure these social and environmental interactions. The concept of well-being proved extremely useful for this purpose. Using the Gulf of Mexico as a regional case study, the research team developed a set of composite indicators to be used for monitoring well-being at the county-level. The indicators selected for the study were: Social Connectedness, Economic Security, Basic Needs, Health, Access to Social Services, Education, Safety, Governance, and Environmental Condition. For each of the 37 sample counties included in the study region, investigators collected and consolidated existing, secondary data representing multiple aspects of objective well-being. To conduct a longitudinal assessment of changing wellbeing and environmental conditions, data were collected for the period of 2000 to 2010. The team focused on the Gulf of Mexico because the development of a baseline of well-being would allow NOAA and other agencies to better understand progress made toward recovery in communities affected by the Deepwater Horizon oil spill. However, the broader purpose of the project was to conceptualize and develop an approach that could be adapted to monitor how coastal communities are doing in relation to a variety of ecosystem disruptions and associated interventions across all coastal regions in the U.S. and its Territories. The method and models developed provide substantial insight into the structure and significance of relationships between community well-being and environmental conditions. Further, this project has laid the groundwork for future investigation, providing a clear path forward for integrated monitoring of our nation’s coasts. The research and monitoring capability described in this document will substantially help counties, local organizations, as well state and federal agencies that are striving to improve all facets of community well-being.