899 resultados para cataract extraction
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.
Resumo:
Synergistic extraction of zinc(IT) and cadmium(11) from hydrochloric acid solution with primary amine N1923 and neutral organophosphorus derivatives Cyanex 923 and Cyanex 925 is the focus of this paper. Extraction mechanisms are discussed as well as how the acidity of the aqueous phase, the composition of the organic phase, and the experimental temperature affect the rates of extraction of metal ions. Differences between synergistic efficiency of Zn(II) and Cd(II) with mixtures of primary amines N1923 and either Cyanex 923 or Cyanex 925 are observed. The equilibrium constants, the composition, and the formation constants of the extracted complexes as well as the values of the thermodynamic functions are calculated. According to the synergy coefficient formula, the synergy effect on the extraction of Zn(II) is in the following order:N1923 + Cyanex 925 > N1923 + Cyanex 923 This order is reversed in the case of cadmium(II). For the same synergistic system, the extraction rate follows the order: Zn(II) > Cd(II). Furthermore, the stereochemical structures of the various extractants and their effect on metal ion extraction rate are also investigated.
Resumo:
The solvent extraction of La3+ from hydrochloric acid solutions was investigated using his (2, 4, 4-trimethylpentyl) monothiophosphinic acid (Cyanex 302, HL) as an extractant. The effect of equilibrium of aqueous acidity on extraction of La3+ using Cyanex 302 In different diluents was discussed. The effects of extractant concentration and chloride ion on the extraction reaction were also studied. Stoichiometry of the extraction reactions and the nature of metal complexes formed were determined using slope analysis technique and IR measurement.
Resumo:
The extraction of zinc(II) and cadmium(II) from a chloride medium by mixtures of primary amine N1923 and organophosphorus acids [di-(2-ethylhexyl)-phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP), isopropyl phosphonic acid 1-hexyl-4-ethyloctyl ester, bis(2,4,4-trimethylpentyl) phosphinic acid, bis(2,4,4-trimethylpentyl) monothiophosphinic acid, and bis(2,4,4-trimethylpentyl) dithiophosphinic acid] has been studied in the present paper. Results show that only the mixtures of N1923 + HEH/EHP and N1923 + Cyanex272 have synergistic effects on zinc(II), but the other mixtures have no evident synergistic effects. All six mixtures have no evident synergistic effects on cadmium(H). A possible explanation of the different extraction abilities is given based on the structure of the extractants. Furthermore, the possibilities of separating zinc(II) and cadmium(II) with these mixtures are investigated according to the extractabilities. It is possible to separate Zn2+ from bulk cadmium with N1923 and HEH/EHP mixtures and separate Cd2+ from bulk zinc with N1923 and Cyanex301 mixtures.
Resumo:
The extraction and stripping kinetics of yttrium(III) with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane as an acid extractant have been investigated by constant interfacial cell with laminar flow. The experimental hydrodynamic conditions have been chosen so that the contribution of diffusion to the measured rate of reaction is minimized. The plot of interfacial area on the rate has shown a linear relationship, which makes the interface the most probable local for the chemical reactions. At the same time, the extraction thermodynamic and kinetic methods are compared to determine the equilibrium extraction constant. A rate equation and the rate-determining step of the extraction and stripping of yttrium(III) have also been obtained, respectively.
Resumo:
In this paper, the extraction of Ce(IV) from nitric acid solutions is investigated using di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) in heptane as extractant. Ce(IV) can be extracted effectively from nitric acid solution, whereas it is poorly extracted from sulfuric acid solution. Compared with some other organophosphorus esters, DEHEHP has moderate extractablity for Ce(IV). The extraction efficiency varies with diluent in the order: aliphatic hydrocarbons > nitrobenzene > aromatic hydrocarbons > carbon tetrachloride > chloroform. Regeneration and loading capacities of DEHEHP have also been examined. Ce(IV) extraction in HNO3 solutions as well as extraction of HNO3 and H2O have been systematically studied. The Ce(IV) extraction increases with an increasing of HNO3 concentration and exhibits the maximum distribution ratio at 1-1.5 mol/L HNO3. Nitric acid, as a source of nitrate ion, enhances the extraction of metal ion. But it also competes with metal ions for extractant molecules by its own extraction under high acidities. The proposed extraction process is described by the following equilibrium equations
Resumo:
The extractions of the selected rare earths (Sc, Y, La and Gd) from hydrochloric acid solutions have been investigated using bis(2,4,4-trimethylpentyl)-mono thiophosphinic acid (Cyanex 302, HL) in heptane as an extractant. The results demonstrate that the extractions of rare earths occur via the following reaction: Sc(OH)(2+) + 2[(HL)(2)]((O)) double left right arrow [Sc(OH)L-2 (.) 2(HL)]((O)) + 2H(+) Y3+ + 3[(HL)(2)]((O)) double left right arrow [Y(HL2)(3)]((O)) + 3H(+) La(OH)(2)(+) + 3[(HL)(2)](O) double left right arrow [La(OH)(2)L (.) 5(HL)]((O)) + H+ Gd(OH)(2+) + 3[(HL)(2)]((O)) double left right arrow [Gd(OH)L-2 (.) 4(HL)]((O)) + 2H(+) The pH(1/2) values and equilibrium constants of the extracted complexes have been deduced by taking into account the aqueous phase complexation of the metal ion with hydroxyl ligands and plausible complexes extracted into the organic phase. According to the pH(1/2) values, it is possible to realize mutual separation among Sc(III), Y(III), La(III) and Gd(III) with Cyanex 302 by controlling aqueous acidity.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.
Resumo:
The extraction behaviour of Ce(IV), Th(IV) and part of RE(III), viz., La, Ce, Nd and Yb, has been investigated using di(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP,B) in heptane as an extractant. Results show that extractability varies in the order: Ce(IV) > Th(IV) much greater than RE(III). Therefore, it is possible to find the appropriate conditions under which Ce(IV) can be effectively separated from Th(IV) and RE(III). Furthermore, stripping Ce(IV) from the loaded organic phase can be carried out by dilute H2SO4 with an aliquot of H2O2.Roasted bastnasite made in Baotou (China) by Na2CO3 and leached by HNO3, there is about 50% Ce mainly as tetravalent nitrate along with other RE(III) and Th(IV) in the leachings. Through fractional extraction, taking nitric acid leachings of roasted Bastnasite as feed and DEHEHP as an extractant, we can obtain the CeO2 products with high purity of 99.9-99.99%, with a yield of >85%, in which ThO2/CeO2 < 10(-4).
Resumo:
The bastnasite of Baotou (China) was roasted in concentrated sulfuric acid at 250-300 degreesC and the calcined products were leached by water. Almost all rare earths (RE) were moved into solutions in trivalent along with some radioactive impurity thorium(IV) (Th(IV))which accounts for 0.4% of RE and other impurities such as Fe(III), Ca, F, P, etc. Through fractional extraction (seven stages for extraction and nine for scrubbing), the mass ratio of Th(IV) and RE (ThO2/REO) in solution has decreased to 5 x 10(-6). The purity of ThO2 product recovered from organic phase is above 99%. The iron(III) in solutions can be removed in the form of precipitation by adding some magnesia into the solutions. Then RE can be concentrated by solvent extraction with 2-ethylhexyl phosphinic acid 2-ethylhexylester (P-507). The results of fractional extraction show that the concentration of total RE in aqueous solutions stripped by hydrochloric acid is over 200 g REO/I with the yield of RE above 99%. Individual RE can be attained by solvent extraction with P507 in the following process.
Resumo:
The coordination reactions during the solvent extraction of cerium(IV) and fluorine(l) from mixed nitric acid and hydrofluoric acid solutions by di-(2-ethylhexyl)-2-ethylhexylphosphonate, L (DEHEHP) in heptane have been investigated. The extraction data have been analyzed by graphical methods taking into account all plausible species extracted into the organic phase. Different variables influencing the extraction of Ce(IV), such as the concentrations of nitrate ions, hydrofluroric acid, nitric acid, and extractant have been studied. The results demonstrate that DEHEHP can extract not only Ce(NO3)(4) as Ce(NO3)4.2L and HF as HF (.) H2O (.) L, but both together as Ce(HF)(NO3)(4) (.) L. The extraction equilibrium equations are determined according to slope analysis and IR spectra. The equilibrium constants of the extracted complexes have been calculated, taking into account complexation between the metal ion and inorganic ligands in the aqueous phase and all plausible complexes extracted into the organic phase. It is also shown that boric acid, which was added into the mixed solutions to complex with F(I) is not extracted by DEHEHP, and neither does it affect the extraction of cerium(IV) and HF, nor change the extraction mechanism.
Resumo:
In the present paper is reported the method for the isolation and extraction of total flavonoids of Epimedium Koreanum Nakai by means of supercritical fluid extraction (SFE). By examining pressure, temperature. amounts of modifier and extraction time, the optimized condition of SFE is confirmed as 30 MPa and 60 degreesC. with 70% ethanol as the modifier. The samples were statically extracted for 30 min, followed by dynamic extraction for 120 min at a flow rate of 6 mL/min. The quantitative analysis of total flavonoids was performed by UV-Vis spectrophotometry. Compared with the conventional method, the SFE method is more efficient. more rapid and more friendly environmentally.
Resumo:
Ceramic carbon materials were developed as new sorbents for solid-phase extraction of organic compounds using chlorpromazine as a representative. The macroporosity and heterogeneity of ceramic carbon materials allow extracting a large amount of chlorpromazine over a short time. Thus, the highly sensitive and selective determination of chlorpromazine in urine sample was achieved by differential pulse voltammograms after only 1-min extraction. The total analysis time was less than 3 min. In comparison with other electrochemical and electrochemi-luminescent methods following 1-min extraction, the proposed method improved sensitivity by about 2 and 1 order of magnitude, respectively. The fast extraction, diversity, and conductivity of ceramic carbon materials make them promising sorbents for various solid-phase extractions, such as solid-phase microextraction, thin-film microextraction, and electrochemically controlled solidphase extraction. The preliminary applications of ceramic carbon materials in chromatography were also studied.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.