934 resultados para benzyl phenyl ether
Resumo:
2-Unsubstituted isoxazol-5(4H)-ones and -5(2N)-ones may be acylated by acid chlorides, anhydrides or carboxylic acids in the presence of carbodiimides, to give O- and N-acylated products, The solvent, the presence of base and the temperature are found to alter the product ratios dramatically, but the substituents present at C-3 have the greatest effect, Aliphatic acid anhydrides and chlorides generally react at nitrogen, but aroyl halides give significant proportions of O-acylated products, Limited success in converting O-aroyl to N-aroyl isoxazolones is reported.
Resumo:
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
Background/Aims. The transcription factor nuclear factor-kappa B (NF-kappa B) exerts a pivotal role in the pathogenesis of hepatic ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent and specific NF-kappa B inhibitor, presents protective effects on I/R injury in some tissues. This study aimed to evaluate the effect of CAPE on hepatic I/R injury in rats. Materials and methods. Wistar rats were submitted to a sham operation, 60 min ischemia, or 60 min ischemia plus saline or CAPE treatment followed by 6 h reperfusion. Liver tissue injury was evaluated by alanine aminotransferase, aspartate aminotransferase, and tissue glutathione measurement, and histological damage score. Apoptotic hepatocytes were determined by the transferase-mediated dUTP-biotin nick-end labeling assay. Hepatic neutrophil accumulation was assessed by the naphthol method. Lipid peroxidation and NF-kappa B activation were evaluated by 4-hydroxynonenal and NF-kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase of alanine aminotransferase and aspartate aminotransferase after reperfusion, but with lower levels in CAPE group. Tissue glutathione content declined gradually during ischemia to reperfusion and was partially recovered with CAPE treatment. The histological damage score, apoptosis index, and neutrophil infiltration, as well as 4-hydroxynonenal and NF-kappa B p65 nuclear labeling, were higher in the liver of animals submitted to I/R compared to the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect the liver against normothermic I/R injury in rats. This effect may be associated with the inhibition of the NF-kappa B signaling pathway and decrease of the acute inflammatory response following I/R in the liver. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and P-hydroxy-mexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak (R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX. Chirality 21:648-656, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background and purpose: We investigated the effect of nitric oxide synthase (NOS) inhibition on polymorphonuclear cell (PMN) influx in zymosan or lipopolysaccharide (LPS)-induced arthritis and peritonitis. Experimental approach: Wistar rats received intra-articular (i.art.) zymosan (30-1000 mu g) or LPS (1-10 mu g). Swiss C57/Bl6 mice genetically deficient in intercellular adhesion molecule-1 (ICAM-1(-/-)) or in beta(2)-integrin (beta(2)-integrin(-/-)) received zymosan either i.art. or i.p. PMN counts, leukotriene B(4) (LTB(4)), tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) levels were measured in joint and peritoneal exudates. Groups received the NOS inhibitors N(G)-nitro-L-arginine methyl ester (LN), nitro-L-arginine, N-[3-(aminomemethyl) benzyl] acetamide or aminoguanidine, prior to zymosan or LPS, given i.p. or s.c. in the arthritis and peritonitis experiments respectively. A group of rats received LN locally (i.art. or i.p.), 30 min prior to 1 mg zymosan i.art. Key results: Systemic or local NOS inhibition significantly prevented PMN migration in arthritis while increasing it in peritonitis, regardless of stimuli, concentration of NOS inhibitors and species. NOS inhibition did not alter TNF-alpha and IL-10 but decreased LTB(4) in zymosan-induced arthritis. LN administration significantly inhibited PMN influx into the joints of ICAM-1(-/-) and beta(2)-integrin(-/-) mice with zymosan-arthritis, while not altering PMN influx into the peritoneum of mice with zymosan-peritonitis. Conclusions and implications: Nitric oxide has a dual modulatory role on PMN influx into joint and peritoneal cavities that is stimulus-and species-independent. Differences in local release of LTB(4) and in expression of ICAM-1 and beta(2)-integrin account for this dual role of NO on PMN migration.
Resumo:
Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1 beta. Activation of P2X(7) receptors stimulates conversion of pro-IL-1 beta into mature IL-1 beta, which is then secreted. Because both LPS (in vivo) and IL-1 beta (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X(7) receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1 beta mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco`s modified Eagle`s medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X(7) receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X(7) receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1 beta and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1 beta receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N(G)-nitro-L-arginine methyl ester or N-([3-(aminomethyl) phenyl] methyl) ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1 beta release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1 beta induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1 beta-mediated release of nitric oxide by iNOS.
Resumo:
There are evidences that targeting IL-18 might be beneficial to inhibit inflammatory symptoms, including hypernociception (decrease in nociceptive threshold). The mechanism of IL-18 mechanical hypernociception depends on endothelin in rats and mice. However, the role of IL-18 in overt pain-like behaviour remains undetermined. Therefore, we addressed the role of IL-18 in writhing response induced by intraperitoneal (i.p.) injection of phenyl-p-benzoquinone (PBQ) and acetic acid in mice. Firstly, it was detected that PBQ and acetic acid i.p. injection induced a dose-dependent number of writhes in Balb/c mice. Subsequently, it was observed that the PBQ- but not the acetic acid-induced writhes were diminished in IL-18 deficient ((-/-)) mice. Therefore, considering that IFN-gamma, endothelin and prostanoids mediate IL-18-induced mechanical hypernociception, we also investigated the role of these mediators in the same model of writhing response in which IL-18 participates. It was noticed that PBQ-induced writhes were diminished in IFN-gamma(-/-) mice and by the treatment with bosentan (mixed enclothelin ETA/ETB receptor antagonist), BQ 123 (cyclo[DTrp-DAsp-Pro-DVal-Leu], selective enclothelin ETA receptor antagonist), BQ 788 (N-cys-2,6-dimethylpiperidinocarbonyl-L-methylleucyl-D-1 -methoxycarboyl-D-norleucine, selective endothelin ETB receptor antagonist) or indomethacin (cycloxigenase inhibitor). Thus, IL-18, IFN-gamma, endothelin acting on endothelin ETA and ETB receptors, and prostanoids mediate PBQ-induced writhing response in mice. To conclude, these results further advance the understanding of the physiopathology of overt pain-like behaviour, and suggest for the first time a role for IL-18 in writhing response in mice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The current therapy of acute pulmonary embolism is focused on removing the mechanical obstruction of the pulmonary vessels. However, accumulating evidence suggests that pulmonary vasoconstriction drives many of the hemodynamic changes found in this condition. We examined the effects of stimulation of soluble guanylate cyclase with BAY 41-2272 (5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine) in an anesthetized dog model of acute pulmonary embolism. Hemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with vehicle (N = 5), and in embolized dogs (intravenous injections of microspheres) that received BAY 41-2272 intravenously in doses of 0.03, 0.1, 0.3, and 1 mg/kg/h or vehicle (1 ml/kg/h of 1.13% ethanol in saline, volume/volume). Plasma cGMP and thiobarbituric acid reactive substances concentrations were determined using a commercial enzyme immunoassay and a fluorometric method, respectively. The infusion of BAY 41-2272 resulted in a decrease in pulmonary artery pressure by similar to 29%, and in pulmonary vascular resistance by similar to 46% of the respective increases induced by lung embolization (both P<0.05). While the higher doses of BAY 41-2272 produced no additional effects on the pulmonary circulation, they caused significant arterial hypotension and reduction in systemic vascular resistance (both P<0.05). Although BAY 41-2272 increased cGMP concentrations (P<0.05), it did not affect the hypoxemia and the increased oxidative stress caused by lung embolization. These results suggest that stimulation of soluble guanylate cyclase with low (but not high) doses of BAY 41-2272 produces selective pulmonary vasodilation during acute pulmonary embolism. The dose-dependent systemic effects produced by BAY 41-2272, however, may limit its usefulness in larger doses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Quercetin (1) is known to have both antioxidant and antinociceptive effects. However, the mechanism involved in its antinociceptive effect is not fully elucidated. Cytokines and reactive oxygen species have been implicated in the cascade of events resulting in inflammatory pain. Therefore, we evaluated the antinociceptive mechanism of 1 focusing on the role of cytokines and Oxidative stress. Intraperitoneal and oral treatments with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid and phenyl-p-benzoquinone and also the second phase of formalin- and carrageenin-induced mechanical hypernociception. Compound I also inhibited the hypernociception induced by cytokines (e.g., TNF alpha and CXCL1), but not by inflammatory mediators that directly sensitize the nociceptor such as PGE(2) and dopamine. On the other hand, 1 reduced carrageenin-induced IL-1 beta production as well as carrageenin-induced decrease of reduced glutathione (GSH) levels. These results suggest that I exerts its analgesic effect by inhibiting pro-nociceptive cytokine production and the oxidative imbalance mediation of inflammatory pain.
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Labetalol is clinically available as a mixture of two racemates (four stereoisomers). The stereoisomer (R,R) has as main activity the beta(1)-antagonism and the stereoisomer (S,R) is highly selective for the alpha(1) adrenoceptor and is responsible for most of the alpha-blocker activity. In the present investigation, a method for the analysis of labetalol stereoisomers in human plasma was developed and applied to pharmacokinetic studies. Plasma samples (0.5 ml) were extracted with methyl tert-butyl ether at pH 9.5. The four labetalol stereoisomers were analyzed by LC-MS/MS on a Chirobiotic (R) V column using a mobile phase consisting of methanol, acetic acid, and diethylamine, with a recovery of more than 90% for all four. The quantitation limit was 0.5 ng/ml and linearity was observed at 250 ng/ml plasma for each stereoisomer. Studies of precision and accuracy presented coefficients of variation and percentage inaccuracy of less than 15%, indicating that the method is precise and accurate. The method was applied to the study of the kinetic disposition of labetalol over a period of 12 h after oral administration of a single 100 mg dose to a hypertensive pregnant woman. The clinical study revealed stereoselectivity in the pharmacokinetics of labetalol, with a lower plasma proportion for the active stereoisomers (R,R)-labetalol and (S,R)-labetalol. The stereoselectivity observed after oral administration is due to the hepatic metabolism and the first pass effect, with an AUC((R,R))/AUC((S,S)) ratio of 0.5. Chirality 21:738-744, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.
Resumo:
Ethnopharmacological relevance: The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. Materials and methods: The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. Results: The present work found anxiolytic-like activity of the EO at the dose of 10 mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LOB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. Conclusions: The results corroborate the use of Cymbopogon citratus in folk medicine and suggest that the anxiolytic-like effect of its EO is mediated by the GABA(A) receptor-benzodiazepine complex. (C) 2011 Elsevier Ireland Ltd. All rights reserved.