891 resultados para basis of the solution space of a homogeneous sparse linear system
Resumo:
The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F2:3 families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.
Resumo:
The three-dimensional structure of the N-terminal domain (residues 18–112) of α2-macroglobulin receptor-associated protein (RAP) has been determined by NMR spectroscopy. The structure consists of three helices composed of residues 23–34, 39–65, and 73–88. The three helices are arranged in an up-down-up antiparallel topology. The C-terminal 20 residues were shown not to be in a well defined conformation. A structural model for the binding of RAP to the family of low-density lipoprotein receptors is proposed. It defines a role in binding for both the unordered C terminus and the structural scaffold of the core structure. Pathogenic epitopes for the rat disease Heymann nephritis, an experimental model of human membranous glomerulonephritis, have been identified in RAP and in the large endocytic receptor gp330/megalin. Here we provide the three-dimensional structure of the pathogenic epitope in RAP. The amino acid residues known to form the epitope are in a helix–loop–helix conformation, and from the structure it is possible to rationalize the published results obtained from studies of fragments of the N-terminal domain.
Resumo:
2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.
Resumo:
The exceptional sensitivity of Mycobacterium tuberculosis to isonicotinic acid hydrazide (INH) lacks satisfactory definition. M. tuberculosis is a natural mutant in oxyR, a central regulator of peroxide stress response. The ahpC gene, which encodes a critical subunit of alkyl hydroperoxide reductase, is one of the targets usually controlled by oxyR in bacteria. Unlike in mycobacterial species less susceptible to INH, the expression of ahpC was below detection limits at the protein level in INH-sensitive M. tuberculosis and Mycobacterium bovis strains. In contrast, AhpC was detected in several series of isogenic INH-resistant (INHr) derivatives. In a demonstration of the critical role of ahpC in sensitivity to INH, insertional inactivation of ahpC on the chromosome of Mycobacterium smegmatis, a species naturally insensitive to INH, dramatically increased its susceptibility to this compound. These findings suggest that AhpC counteracts the action of INH and that the levels of its expression may govern the intrinsic susceptibility of mycobacteria to this front-line antituberculosis drug.
Resumo:
Recently the definition of the metazoan RNA polymerase II and archaeal core promoters has been expanded to include a region immediately upstream of the TATA box called the B recognition element (BRE), so named because eukaryal transcription factor TFIIB and its archaeal orthologue TFB interact with the element in a sequence-specific manner. Here we present the 2.4-Å crystal structure of archaeal TBP and the C-terminal core of TFB (TFBc) in a complex with an extended TATA-box-containing promoter that provides a detailed picture of the stereospecific interactions between the BRE and a helix–turn–helix motif in the C-terminal cyclin repeat of TFBc. This interaction is important in determining the level of basal transcription and explicitly defines the direction of transcription.
Resumo:
We have studied patient PB, who, after an electric shock that led to vascular insufficiency, became virtually blind, although he retained a capacity to see colors consciously. For our psychophysical studies, we used a simplified version of the Land experiments [Land, E. (1974) Proc. R. Inst. G. B. 47, 23–58] to learn whether color constancy mechanisms are intact in him, which amounts to learning whether he can assign a constant color to a surface in spite of changes in the precise wavelength composition of the light reflected from that surface. We supplemented our psychophysical studies with imaging ones, using functional magnetic resonance, to learn something about the location of areas that are active in his brain when he perceives colors. The psychophysical results suggested that color constancy mechanisms are severely defective in PB and that his color vision is wavelength-based. The imaging results showed that, when he viewed and recognized colors, significant increases in activity were restricted mainly to V1-V2. We conclude that a partly defective color system operating on its own in a severely damaged brain is able to mediate a conscious experience of color in the virtually total absence of other visual abilities.
Resumo:
Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.
Resumo:
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos–Jun–AP-1 complex may contribute to its functional versatility at different promoters.
Resumo:
Molecular beacons are DNA probes that form a stem-and-loop structure and possess an internally quenched fluorophore. When they bind to complementary nucleic acids, they undergo a conformational transition that switches on their fluorescence. These probes recognize their targets with higher specificity than probes that cannot form a hairpin stem, and they easily discriminate targets that differ from one another by only a single nucleotide. Our results show that molecular beacons can exist in three different states: bound to a target, free in the form of a hairpin structure, and free in the form of a random coil. Thermodynamic analysis of the transitions between these states reveals that enhanced specificity is a general feature of conformationally constrained probes.
Resumo:
The circulatory half-life of the glycoprotein hormone lutropin (LH) is precisely regulated by the mannose (Man)/GalNAc-4-SO4 receptor expressed in hepatic endothelial cells. Rapid clearance from the circulation contributes to the episodic rise and fall of LH levels that is essential for maximal stimulation of the G protein-coupled LH receptor. We have defined two molecular forms of the Man/GalNAc-4-SO4 receptor that differ in ligand specificity, cell and tissue expression, and function. The form expressed by hepatic endothelial cells binds GalNAc-4-SO4-bearing ligands and regulates hormone circulatory half-life, whereas the form expressed by macrophages binds Man-bearing ligands and may play a role in innate immunity. We demonstrate that the GalNAc-4-SO4-specific form in hepatic endothelial cells is dimeric whereas the Man-specific form in lung macrophages is monomeric, accounting for the different ligand specificities of the receptor expressed in these tissues. Two cysteine-rich domains, each of which binds a single GalNAc-4-SO4, are required to form stable complexes with LH. The kinetics of LH binding by the GalNAc-4-SO4-specific form of the receptor in conjunction with its rate of internalization from the cell surface make it likely that only two of the four terminal GalNAc-4-SO4 moieties present on native LH are engaged before receptor internalization. As a result, the rate of hormone clearance will remain constant over a wide range of LH concentrations and will not be sensitive to variations in the number of terminal GalNAc-4-SO4 moieties as long as two or more are present on multiple oligosaccharides.
Resumo:
We studied the performance of young and senior subjects on a well known working memory task, the Operation Span. This is a dual-task in which subjects perform a memory task while simultaneously verifying simple equations. Positron-emission tomography scans were taken during performance. Both young and senior subjects demonstrated a cost in accuracy and latency in the Operation Span compared with performing each component task alone (math verification or memory only). Senior subjects were disproportionately impaired relative to young subjects on the dual-task. When brain activation was examined for senior subjects, we found regions in prefrontal cortex that were active in the dual-task, but not in the component tasks. Similar results were obtained for young subjects who performed relatively poorly on the dual-task; however, for young subjects who performed relatively well in the dual-task, we found no prefrontal regions that were active only in the dual-task. Results are discussed as they relate to the executive component of task switching.
Resumo:
Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.
Resumo:
Positron-emission tomography and functional MRS imaging signals can be analyzed to derive neurophysiological values of cerebral blood flow or volume and cerebral metabolic consumption rates of glucose (CMRGlc) or oxygen (CMRO2). Under basal physiological conditions in the adult mammalian brain, glucose oxidation is nearly complete so that the oxygen-to-glucose index (OGI), given by the ratio of CMRO2/CMRGlc, is close to the stoichiometric value of 6. However, a survey of functional imaging data suggests that the OGI is activity dependent, moving further below the oxidative value of 6 as activity is increased. Brain lactate concentrations also increase with stimulation. These results had led to the concept that brain activation is supported by anaerobic glucose metabolism, which was inconsistent with basal glucose oxidation. These differences are resolved here by a proposed model of glucose energetics, in which a fraction of glucose is cycled through the cerebral glycogen pool, a fraction that increases with degree of brain activation. The “glycogen shunt,” although energetically less efficient than glycolysis, is followed because of its ability to supply glial energy in milliseconds for rapid neurotransmitter clearance, as a consequence of which OGI is lowered and lactate is increased. The value of OGI observed is consistent with passive lactate efflux, driven by the observed lactate concentration, for the few experiments with complete data. Although the OGI changes during activation, the energies required per neurotransmitter release (neuronal) and clearance (glial) are constant over a wide range of brain activity.
Resumo:
Epidermolysis bullosa simplex (EBS) is a group of autosomal dominant skin diseases characterized by blistering, due to mechanical stress-induced degeneration of basal epidermal cells. It is now well-established that the three major subtypes of EBS are genetic disorders of the basal epidermal keratins, keratin 5 (K5) and keratin 14 (K14). Here we show that a rare subtype, referred to as EBS with mottled pigmentation (MP), is also a disorder of these keratins. Affected members of two seemingly unrelated families with EBS-MP had a C to T point mutation in the second base position of codon 24 of one of two K5 alleles, leading to a Pro: Leu mutation. This mutation was not present in unaffected members nor in 100 alleles from normal individuals. Linkage analyses mapped the defect to this type II keratin gene (peak logarithm of odds score at phi = 0 of 3.9), which is located on chromosome 12q11-q13. This provides strong evidence that this mutation is responsible for the EBS-MP phenotype. Only conserved between K5 and K6, and not among any of the other type II keratins, Pro-24 is in the nonhelical head domain of K5, and only mildly perturbs the length of 10-nm keratin filaments assembled in vitro. However, this part of the K5 head domain is likely to protrude on the filament surface, perhaps leading to additional aberrations in intermediate filament architecture and/or in melanosome distribution that are seen ultrastructurally in patients with the mutation.
The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.
Resumo:
The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.