884 resultados para ambient intelligence
Resumo:
Business intelligence (BI) is an information process that includes the activities and applications used to transform business data into valuable business information. Today’s enterprises are collecting detailed data which has increased the available business data drastically. In order to meet changing customer needs and gain competitive advantage businesses try to leverage this information. However, IT departments are struggling to meet the increased amount of reporting needs. Therefore, recent shift in the BI market has been towards empowering business users with self-service BI capabilities. The purpose of this study was to understand how self-service BI could help businesses to meet increased reporting demands. The research problem was approached with an empirical single case study. Qualitative data was gathered with a semi-structured, theme-based interview. The study found out that case company’s BI system was mostly used for group performance reporting. Ad-hoc and business user-driven information needs were mostly fulfilled with self-made tools and manual work. It was felt that necessary business information was not easily available. The concept of self-service BI was perceived to be helpful to meet such reporting needs. However, it was found out that the available data is often too complex for an average user to fully understand. The respondents felt that in order to self-service BI to work, the data has to be simplified and described in a way that it can be understood by the average business user. The results of the study suggest that BI programs struggle in meeting all the information needs of today’s businesses. The concept of self-service BI tries to resolve this problem by allowing users easy self-service access to necessary business information. However, business data is often complex and hard to understand. Self-serviced BI has to overcome this challenge before it can reach its potential benefits.
Resumo:
Kilpailuetua tavoittelevan yrityksen pitää kyetä jalostamaan tietoa ja tunnistamaan sen avulla uusia tulevaisuuden mahdollisuuksia. Tulevaisuuden mielikuvien luomiseksi yrityksen on tunnettava toimintaympäristönsä ja olla herkkänä havaitsemaan muutostrendit ja muut toimintaympäristön signaalit. Ympäristön elintärkeät signaalit liittyvät kilpailijoihin, teknologian kehittymiseen, arvomaailman muutoksiin, globaaleihin väestötrendeihin tai jopa ympäristön muutoksiin. Spatiaaliset suhteet ovat peruspilareita käsitteellistää maailmaamme. Pitney (2015) on arvioinut, että 80 % kaikesta bisnesdatasta sisältää jollakin tavoin viittauksia paikkatietoon. Siitä huolimatta paikkatietoa on vielä huonosti hyödynnetty yritysten strategisten päätösten tukena. Teknologioiden kehittyminen, tiedon nopea siirto ja paikannustekniikoiden integroiminen eri laitteisiin ovat mahdollistaneet sen, että paikkatietoa hyödyntäviä palveluja ja ratkaisuja tullaan yhä enemmän näkemään yrityskentässä. Tutkimuksen tavoitteena oli selvittää voiko location intelligence toimia strategisen päätöksenteon tukena ja jos voi, niin miten. Työ toteutettiin konstruktiivista tutkimusmenetelmää käyttäen, jolla pyritään ratkaisemaan jokin relevantti ongelma. Konstruktiivinen tutkimus tehtiin tiiviissä yhteistyössä kolmen pk-yrityksen kanssa ja siihen haastateltiin kuutta eri strategiasta vastaavaa henkilöä. Tutkimuksen tuloksena löydettiin, että location intelligenceä voidaan hyödyntää strategisen päätöksenteon tukena usealla eri tasolla. Yksinkertaisimmassa karttaratkaisussa halutut tiedot tuodaan kartalle ja luodaan visuaalinen esitys, jonka avulla johtopäätöksien tekeminen helpottuu. Toisen tason karttaratkaisu pitää sisällään sekä sijainti- että ominaisuustietoa, jota on yhdistetty eri lähteistä. Tämä toisen tason karttaratkaisu on usein kuvailevaa analytiikkaa, joka mahdollistaa erilaisten ilmiöiden analysoinnin. Kolmannen eli ylimmän tason karttaratkaisu tarjoaa ennakoivaa analytiikkaa ja malleja tulevaisuudesta. Tällöin ohjelmaan koodataan älykkyyttä, jossa informaation keskinäisiä suhteita on määritelty joko tiedon louhintaa tai tilastollisia analyysejä hyödyntäen. Tutkimuksen johtopäätöksenä voidaan todeta, että location intelligence pystyy tarjoamaan lisäarvoa strategisen päätöksenteon tueksi, mikäli yritykselle on hyödyllistä ymmärtää eri ilmiöiden, asiakastarpeiden, kilpailijoiden ja markkinamuutoksien maantieteellisiä eroavaisuuksia. Parhaimmillaan location intelligence -ratkaisu tarjoaa luotettavan analyysin, jossa tieto välittyy muuttumattomana päätöksentekijältä toiselle ja johtopäätökseen johtaneita syitä on mahdollista palata tarkastelemaan tarvittaessa uudelleen.
Resumo:
Under subtropical and tropical environments soybean seed (Glycine max (L.) Merrill) are harvested early to avoid deterioration from weathering. Careful after-harvest drying is required and is an important step in maintaining the physiological quality of the seed. Soybean seed should be harvested when the moisture content is in a range of 16-20%. Traditional drying utilizes a high temperature air stream passed through the seed mass without dehumidification. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the seed. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is passed through the seed mass at the same environmental temperature. Two studies were conducted to evaluate the performance of HPT for dry soybean seed. In the first study the seeds were dried from 17.5 to 11.1% in 2 hours and 29 minutes and in the second sudy the seeds were dried from 22.6 to 11.9% in 16 hours and 32 minutes. This drying process caused no reduction in seed quality as measured by the standard germination, tetrazolium-viability, accelerated aging and seedling vigor classification tests. The only parameter that indicated a slight seed quality reduction was tetrazolium vigor in the second study. It was concluded that the HPT system is a promising technology for drying soybean seed when efficiency and maintenance of physiological quality are desired.
Resumo:
The moisture content of peanut kernel (Arachis hypogaea L.) at digging ranges from 30 to 50% on a wet basis (w.b.). The seed moisture content must be reduced to 10.5% or below before seeds can be graded and marketed. After digging, peanuts are cured on a window sill for two to five days then mechanically separated from the vine. Heated air is used to further dry the peanuts from approximately 18 to 10% moisture content w.b. Drying is required to maintain peanut seed and grain quality. Traditional dryers pass a high temperature and high humidity air stream through the seed mass. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the kernels. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is heated and passed through the seed. A study was conducted to evaluate the performance of the HPT system in drying peanut seed. The seeds inside the shells were dried from 17.4 to 7.3% in 14 hours and 11 minutes, with a rate of moisture removal of 0.71% mc per hour. This drying process caused no reduction in seed quality as measured by the standard germination, accelerated ageing and field emergence tests. It was concluded that the HPT system is a promising technology for drying peanut seed when efficiency and maintenance of physiological quality are desired.
Resumo:
Business intelligence (BI) is an information process that includes the activities and applications used to transform business data into valuable business information. Today’s enterprises are collecting detailed data which has increased the available business data drastically. In order to meet changing customer needs and gain competitive advantage businesses try to leverage this information. However, IT departments are struggling to meet the increased amount of reporting needs. Therefore, recent shift in the BI market has been towards empowering business users with self-service BI capabilities. The purpose of this study was to understand how self-service BI could help businesses to meet increased reporting demands. The research problem was approached with an empirical single case study. Qualitative data was gathered with a semi-structured, theme-based interview. The study found out that case company’s BI system was mostly used for group performance reporting. Ad-hoc and business user-driven information needs were mostly fulfilled with self-made tools and manual work. It was felt that necessary business information was not easily available. The concept of self-service BI was perceived to be helpful to meet such reporting needs. However, it was found out that the available data is often too complex for an average user to fully understand. The respondents felt that in order to self-service BI to work, the data has to be simplified and described in a way that it can be understood by the average business user. The results of the study suggest that BI programs struggle in meeting all the information needs of today’s businesses. The concept of self-service BI tries to resolve this problem by allowing users easy self-service access to necessary business information. However, business data is often complex and hard to understand. Self-serviced BI has to overcome this challenge before it can reach its potential benefits.
Resumo:
Finnish Defence Studies is published under the auspices of the National Defence College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence College.
Resumo:
Intelligence from a human source, that is falsely thought to be true, is potentially more harmful than a total lack of it. The veracity assessment of the gathered intelligence is one of the most important phases of the intelligence process. Lie detection and veracity assessment methods have been studied widely but a comprehensive analysis of these methods’ applicability is lacking. There are some problems related to the efficacy of lie detection and veracity assessment. According to a conventional belief an almighty lie detection method, that is almost 100% accurate and suitable for any social encounter, exists. However, scientific studies have shown that this is not the case, and popular approaches are often over simplified. The main research question of this study was: What is the applicability of veracity assessment methods, which are reliable and are based on scientific proof, in terms of the following criteria? o Accuracy, i.e. probability of detecting deception successfully o Ease of Use, i.e. easiness to apply the method correctly o Time Required to apply the method reliably o No Need for Special Equipment o Unobtrusiveness of the method In order to get an answer to the main research question, the following supporting research questions were answered first: What kinds of interviewing and interrogation techniques exist and how could they be used in the intelligence interview context, what kinds of lie detection and veracity assessment methods exist that are reliable and are based on scientific proof and what kind of uncertainty and other limitations are included in these methods? Two major databases, Google Scholar and Science Direct, were used to search and collect existing topic related studies and other papers. After the search phase, the understanding of the existing lie detection and veracity assessment methods was established through a meta-analysis. Multi Criteria Analysis utilizing Analytic Hierarchy Process was conducted to compare scientifically valid lie detection and veracity assessment methods in terms of the assessment criteria. In addition, a field study was arranged to get a firsthand experience of the applicability of different lie detection and veracity assessment methods. The Studied Features of Discourse and the Studied Features of Nonverbal Communication gained the highest ranking in overall applicability. They were assessed to be the easiest and fastest to apply, and to have required temporal and contextual sensitivity. The Plausibility and Inner Logic of the Statement, the Method for Assessing the Credibility of Evidence and the Criteria Based Content Analysis were also found to be useful, but with some limitations. The Discourse Analysis and the Polygraph were assessed to be the least applicable. Results from the field study support these findings. However, it was also discovered that the most applicable methods are not entirely troublefree either. In addition, this study highlighted that three channels of information, Content, Discourse and Nonverbal Communication, can be subjected to veracity assessment methods that are scientifically defensible. There is at least one reliable and applicable veracity assessment method for each of the three channels. All of the methods require disciplined application and a scientific working approach. There are no quick gains if high accuracy and reliability is desired. Since most of the current lie detection studies are concentrated around a scenario, where roughly half of the assessed people are totally truthful and the other half are liars who present a well prepared cover story, it is proposed that in future studies lie detection and veracity assessment methods are tested against partially truthful human sources. This kind of test setup would highlight new challenges and opportunities for the use of existing and widely studied lie detection methods, as well as for the modern ones that are still under development.
Resumo:
Tässä diplomityössä selvitetään case-tutkimuksena parhaita käytäntöjä Business Intelligence Competency Centerin (BICC) eli liiketoimintatiedonhallinnan osaamiskeskuksen perustamiseen. Työ tehdään LähiTapiolalle, jossa on haasteita BI-alueen hallinnoinnissa kehittämisen hajaantuessa eri yksiköihin ja yhtiöihin. Myös järjestelmäympäristö on moninainen. BICC:llä tavoitellaan parempaa näkyvyyttä liiketoiminnan tarpeisiin ja toisaalta halutaan tehostaa tiedon hyödyntämistä johtamisessa sekä operatiivisen tason työskentelyssä. Tavoitteena on lisäksi saada kustannuksia pienemmäksi yhtenäistämällä järjestelmäympäristöjä ja BI-työkaluja kuten myös toimintamalleja. Työssä tehdään kirjallisuuskatsaus ja haastatellaan asiantuntijoita kolmessa yrityksessä. Tutkimuksen perusteella voidaan todeta, että liiketoiminnan BI-tarpeita kannattaa mahdollistaa eri tasoilla perusraportoinnista Ad-hoc –raportointiin ja edistyneeseen analytiikkaan huomioimalla nämä toimintamalleissa ja järjestelmäarkkitehtuurissa. BICC:n perustamisessa liiketoimintatarpeisiin vastaaminen on etusijalla.
Resumo:
Työn tavoitteena on tutkia Business Intelligencen ja BI-työkalujen vaatimusten kehittymistä viime vuosien aikana ja tutkia miten Microsoft Power BI -ohjelmisto vastaa modernin päätöksenteon tarpeisiin. Työ on toteutettu suurimmalta osin kirjallisuuskatsauksena, minkä lisäksi Microsoft Power BI:n toiminnallisuutta on tutkittu käytännössä käyttäen ohjelmiston ilmaisversiota. Tutkimuksessa on havaittu, että tiedon lähteiden määrän ja datan monimuotoisuuden kasvaessa on syntynyt tarve uusille, tehokkaille BI-järjestelmäratkaisuille, jotka hyödyntävät uudenlaisia menetelmiä. Modernissa BI 2.0 -mallissa korostuvat kehittyneemmän verkkoinfrastruktuurin ja ohjelmistotekniikan täysi hyödyntäminen, käytön helppous, tiedon tuottaminen ja jakaminen massoille, tiedon rikastamisen mahdollistaminen ja visualisoinnin ja interaktiivisuuden keskeinen asema tiedon tulkinnassa. Tutkimuksen perusteella Microsoft Power BI vaikuttaisi täyttävän keskeneräisyydestään ja muutamista tiedonhallinnallisista puutteistaan huolimatta lähes kaikki toimivan BI 2.0 -järjestelmän määritelmistä. Ohjelmisto tarjoaa riittävät analyyttiset ja esitystekniset työkalut useimpien tyypillisten käyttäjien tarpeisiin, minkä lisäksi paranneltu Location Intelligence -ratkaisu sekä uudet Q&A ja nopea oivallus -toiminnot luovat mielenkiintoisen tavan selata dataa. Jää nähtäväksi, miten ratkaisu kehittyy vielä tulevaisuudessa.