974 resultados para aeolian deposit
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
Detailed knowledge of the past history of an active volcano is crucial for the prediction of the timing, frequency and style of future eruptions, and for the identification of potentially at-risk areas. Subaerial volcanic stratigraphies are often incomplete, due to a lack of exposure, or burial and erosion from subsequent eruptions. However, many volcanic eruptions produce widely-dispersed explosive products that are frequently deposited as tephra layers in the sea. Cores of marine sediment therefore have the potential to provide more complete volcanic stratigraphies, at least for explosive eruptions. Nevertheless, problems such as bioturbation and dispersal by currents affect the preservation and subsequent detection of marine tephra deposits. Consequently, cryptotephras, in which tephra grains are not sufficiently concentrated to form layers that are visible to the naked eye, may be the only record of many explosive eruptions. Additionally, thin, reworked deposits of volcanic clasts transported by floods and landslides, or during pyroclastic density currents may be incorrectly interpreted as tephra fallout layers, leading to the construction of inaccurate records of volcanism. This work uses samples from the volcanic island of Montserrat as a case study to test different techniques for generating volcanic eruption records from marine sediment cores, with a particular relevance to cores sampled in relatively proximal settings (i.e. tens of kilometres from the volcanic source) where volcaniclastic material may form a pervasive component of the sedimentary sequence. Visible volcaniclastic deposits identified by sedimentological logging were used to test the effectiveness of potential alternative volcaniclastic-deposit detection techniques, including point counting of grain types (component analysis), glass or mineral chemistry, colour spectrophotometry, grain size measurements, XRF core scanning, magnetic susceptibility and X-radiography. This study demonstrates that a set of time-efficient, non-destructive and high-spatial-resolution analyses (e.g. XRF core-scanning and magnetic susceptibility) can be used effectively to detect potential cryptotephra horizons in marine sediment cores. Once these horizons have been sampled, microscope image analysis of volcaniclastic grains can be used successfully to discriminate between tephra fallout deposits and other volcaniclastic deposits, by using specific criteria related to clast morphology and sorting. Standard practice should be employed when analysing marine sediment cores to accurately identify both visible tephra and cryptotephra deposits, and to distinguish fallout deposits from other volcaniclastic deposits.
Resumo:
Enlightened shareholder primacy (“ESP”) is a new approach in the corporate governance (“CG”) framework. The emergence of this approach is important owing to its role in answering a vital question: is the company really a private organisation to be seen only through the economic prism of contract? Or is it public and about a wider group of interests and underwritten by communitarian concern about social responsibility? Apart from answering this question, ESP explains the changes in corporate directors’ roles and self-regulation strategies of companies.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
The electrochemical formation of nanostructured materials is generally achieved by reduction of a metal salt onto a substrate that does not influence the composition of the deposit. In this work we report that Ag, Au and Pd electrodeposited onto Cu under conditions where galvanic replacement is not viable and hydrogen gas is evolved results in the formation of nanostructured surfaces that unexpectedly incorporate a high concentration of Cu in the final material. Under cathodic polarization conditions the electrodissolution/corrosion of Cu occurs which provides a source of ionic copper that is reduced at the surface-electrolyte interface. The nanostructured Cu/M (M = Ag, Au and Pd) surfaces are investigated for their catalytic activity for the reduction of 4 nitrophenol by NaBH4 where Cu/Ag was found to be extremely active. This work indicates that a substrate electrode can be utilized in an interesting manner t make bimetallic nanostructures with enhanced catalytic activity.
Resumo:
The US dollar is still considered as the main strategic deposit among the currencies of different countries of the world and the policies of the World Bank and the International Financial Organizations have been and will always be influenced by the US economy. Despite the economic crises and commercial balance deficits in the United States, dollar has maintained its high position in and its domination over foreign exchanges and foreign-currency deposits of the countries. The novelty of the present research relies on its consideration of the political properties of the governments and the geopolitical effects of these countries on the position of their monetary and foreign-currency policies and consequently, on the international financial organizations such as the International Monetary Fund and the World Bank, which can determine the future of international economy and the political relations among countries. Our research proves that the political development of the United States and its geopolitical situation have been of the effective factors on dollar growth; and unless the competitors acquire such a relative advantage, they will not be able to seriously challenge the currency of dollar and the monetary policies of the United States, at least in a short time
Resumo:
Raman spectra of two well-defined ferrimolybdite samples, Fe23+(Mo6+O4)3·7–8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe–O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)2− units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)2− and H2O are present in the crystal structure of ferrimolybdite. Approximate O–H⋯O hydrogen bond lengths (2.80–2.73 Å) were inferred from the published infrared spectra.
Resumo:
Developing and maintaining a successful institutional repository for research publications requires a considerable investment by the institution. Most of the money is spent on developing the skill-sets of existing staff or hiring new staff with the necessary skills. The return on this investment can be magnified by using this valuable infrastructure to curate collections of other materials such as learning objects, student work, conference proceedings and institutional or local community heritage materials. When Queensland University of Technology (QUT) implemented its repository for research publications (QUT ePrints) over 11 years ago, it was one of the first institutional repositories to be established in Australia. Currently, the repository holds over 29,000 open access research publications and the cumulative total number of full-text downloads for these document now exceeds 16 million. The full-text deposit rate for recently-published peer reviewed papers (currently over 74%) shows how well the repository has been embraced by QUT researchers. The success of QUT ePrints has resulted in requests to accommodate a plethora of materials which are ‘out of scope’ for this repository. QUT Library saw this as an opportunity to use its repository infrastructure (software, technical know-how and policies) to develop and implement a metadata repository for its research datasets (QUT Research Data Finder), a repository for research-related software (QUT Software Finder) and to curate a number of digital collections of institutional and local community heritage materials (QUT Digital Collections). This poster describes the repositories and digital collections curated by QUT Library and outlines the value delivered to the institution, and the wider community, by these initiatives.
Resumo:
We have studied the mineral kaliborite. The sample originated from the Inder B deposit, Atyrau Province, Kazakhstan, and is part of the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil. The mineral is characterized by a single intense Raman band at 756 cm−1 assigned to the symmetric stretching modes of trigonal boron. Raman bands at 1229 and 1309 cm−1 are assigned to hydroxyl in-plane bending modes of boron hydroxyl units. Raman bands are resolved at 2929, 3041, 3133, 3172, 3202, 3245, 3336, 3398, and 3517 cm−1. These Raman bands are assigned to water stretching vibrations. A very intense sharp Raman band at 3597 cm−1 with a shoulder band at 3590 cm−1 is assigned to the stretching vibration of the hydroxyl units. The Raman data are complimented with infrared data and compared with the spectrum of kaliborite downloaded from the Arizona State University database. Differences are noted between the spectrum obtained in this work and that from the Arizona State University database. This research shows that minerals stored in a museum mineral collection age with time. Vibrational spectroscopy enhances our knowledge of the molecular structure of kaliborite.
Resumo:
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.
Resumo:
The matrix of volcaniclastic kimberlite (VK) from the Muskox pipe (Northern Slave Province, Nunavut, Canada) is interpreted to represent an overprint of an original clastic matrix. Muskox VK is subdivided into three different matrix mineral assemblages that reflect differences in the proportions of original primary matrix constituents, temperature of formation and nature of the altering fluids. Using whole rock X-ray fluorescence (XRF), whole rock X-ray diffraction (XRD), microprobe analyses, back-scatter electron (BSE) imaging, petrography and core logging, we find that most matrix minerals (serpentine, phlogopite, chlorite, saponite, monticellite, Fe-Ti oxides and calcite) lack either primary igneous or primary clastic textures. The mineralogy and textures are most consistent with formation through alteration overprinting of an original clastic matrix that form by retrograde reactions as the deposit cools, or, in the case of calcite, by precipitation from Ca-bearing fluids into a secondary porosity. The first mineral assemblage consists largely of serpentine, phlogopite, calcite, Fe-Ti oxides and monticellite and occurs in VK with relatively fresh framework clasts. Alteration reactions, driven by deuteric fluids derived from the juvenile constituents, promote the crystallisation of minerals that indicate relatively high temperatures of formation (> 400 °C). Lower-temperature minerals are not present because permeability was occluded before the deposit cooled to low temperatures, thus shielding the facies from further interaction with fluids. The other two matrix mineral assemblages consist largely of serpentine, phlogopite, calcite, +/- diopside, and +/- chlorite. They form in VK that contains more country rock, which may have caused the deposit to be cooler upon emplacement. Most framework components are completely altered, suggesting that larger volumes of fluids drove the alteration reactions. These fluids were likely of meteoric provenance and became heated by the volcaniclastic debris when they percolated into the VK infill. Most alteration reactions ceased at temperatures > 200 °C, as indicated by the absence or paucity of lower-temperature phases in most samples, such as saponite. Recognition that Muskox VK contains an original clastic matrix is a necessary first step for evaluating the textural configuration, which is important for reconstructing the physical processes responsible for the formation of the deposit.
Resumo:
Kimberlite terminology remains problematic because both descriptive and genetic terms are mixed together in most existing terminology schemes. In addition, many terms used in existing kimberlite terminology schemes are not used in mainstream volcanology, even though kimberlite bodies are commonly the remains of kimberlite volcanic vents and edifices. We build on our own recently published approach to kimberlite facies terminology, involving a systematic progression from descriptive to genetic. The scheme can be used for both coherent kimberlite (i.e. kimberlite that was emplaced without undergoing any fragmentation processes and therefore preserving coherent igneous textures) and fragmental kimberlites. The approach involves documentation of components, textures and assessing the degree and effects of alteration on both components and original emplacement textures. This allows a purely descriptive composite component, textural and compositional petrological rock or deposit name to be constructed first, free of any biases about emplacement setting and processes. Then important facies features such as depositional structures, contact relationships and setting are assessed, leading to a composite descriptive and genetic name for the facies or rock unit that summarises key descriptive characteristics, emplacement processes and setting. Flow charts summarising the key steps in developing a progressive descriptive to genetic terminology are provided for both coherent and fragmental facies/deposits/rock units. These can be copied and used in the field, or in conjunction with field (e.g. drill core observations) and petrographic data. Because the approach depends heavily on field scale observations, characteristics and process interpretations, only the first descriptive part is appropriate where only petrographic observations are being made. Where field scale observations are available the progression from developing descriptive to interpretative terminology can be used, especially where some petrographic data also becomes available.
Resumo:
The paper presents data on petrology, bulk rock and mineral compositions, and textural classification of the Middle Jurassic Jericho kimberlite (Slave craton, Canada). The kimberlite was emplaced as three steep-sided pipes in granite that was overlain by limestones and minor soft sediments. The pipes are infilled with hypabyssal and pyroclastic kimberlites and connected to a satellite pipe by a dyke. The Jericho kimberlite is classified as a Group Ia, lacking groundmass tetraferriphlogopite and containing monticellite pseudomorphs. The kimberlite formed, during several consecutive emplacement events of compositionally different batches of kimberlite magma. Core-logging and thin-section observations identified at least two phases of hypabyssal kimberlites and three phases of pyroclastic kimberlites. Hypabyssal kimberlites intruded as a main dyke (HK1) and as late small-volume aphanitic and vesicular dykes. Massive pyroclastic kimberlite (MPK1) predominantly filled the northern and southern lobes of the pipe and formed from magma different from the HK1 magma. The MPK1 magma crystallized Ti-, Fe-, and Cr-rich phlogopite without rims of barian phlogopite, and clinopyroxene and spinel without atoll structures. MPK1 textures, superficially reminiscent of tuffisitic kimberlite, are caused by pervasive contamination by granite xenoliths. The next explosive events filled the central lobe with two varieties of pyroclastic kimberlite: (1) massive and (2) weakly bedded, normally graded pyroclastic kimberlite. The geology of the Jericho pipe differs from the geology of South African or the Prairie kimberlites, but may resemble Lac de Gras pipes, in which deeper erosion removed upper fades of resedimented kimberlites.
Resumo:
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.
Resumo:
Although kimberlite pipes/bodies are usually the remains of volcanic vents, in-vent deposits, and subvolcanic intrusions, the terminology used for kimberlite rocks has largely developed independently of that used in mainstream volcanology. Existing kimberlite terminology is not descriptive and includes terms that are rarely used, used differently, and even not used at all in mainstream volcanology. In addition, kimberlite bodies are altered to varying degrees, making application of genetic terminology difficult because original components and depositional textures are commonly masked by alteration. This paper recommends an approach to the terminology for kimberlite rocks that is consistent with usage for other volcanic successions. In modern terrains the eruption and emplacement origins of deposits can often be readily deduced, but this is often not the case for old, variably altered and deformed rock successions. A staged approach is required whereby descriptive terminology is developed first, followed by application of genetic terminology once all features, including the effects of alteration on original texture and depositional features, together with contact relationships and setting, have been evaluated. Because many volcanic successions consist of both primary volcanic deposits as well as volcanic sediments, terminology must account for both possibilities.