980 resultados para acquire immunology
Resumo:
The incidence of autism spectrum disorders, a heterogenous group of neurodevelopmental disorders is increasing. In response, there has been a concerted effort by researchers to identify environmental risk factors that explain the epidemiological changes seen with autism. Advanced parental age, maternal migrant status, maternal gestational stress, pregnancy and birth complications, maternal obesity and gestational diabetes, maternal vitamin D deficiency, use of antidepressants during gestation and exposure to organochlorine pesticides during pregnancy are all associated with an increased risk of autism. Folic acid use prior to pregnancy may reduce the risk of autism. Exposure to antenatal ultrasonography, maternal gestational cigarette and alcohol use do not appear to influence the risk of autism in offspring. There is little evidence that exposure to environmental toxins such as thimerosal, polybrominated diphenyl ethers and di-(2-ethylhexyl) phthalate in early childhood increases the risk of autism. Apart from birth complications, the current evidence suggests that the majority of environmental factors increasing the risk of autism occur in the antenatal period. Consistent with the rise in incidence in autism, some of these environmental factors are now more common in developed nations. Further research is required to determine how these environmental exposures translate to an increased risk of autism. Understanding how these exposures alter neurodevelopment in autistic children may inform both the aetiopathogenesis and the strategies for prevention of autism.
Resumo:
Inflammation is a fundamental component of the normal adult wound healing response occurring even in the absence of infection. It performs many beneficial roles such as the clearing of damaged cells and extracellular matrix (ECM), the removal of pathogens that might other wise multiply and spread, and the secretion of mediators that regulate other aspects of wound healing such as proliferation, re-epithelialisation and wound remodelling. Yet, excess and/or prolonged inflammation is detrimental to wound healing and leads to increased fibrosis and scarring, which can be disfiguring and, in cases such as contractures, can lead to disability. Furthermore, excessive inflammation is a major contributing factor to the persistence of chronic non-healing wounds, which are “stuck” in the inflammatory phase of healing and fail to reepithelialise. Current research suggest that the type of immune cells, their timing and the level of inflammation in a wound could have dramatic effect on whether a wound heals in a timely fashion and the final quality of the repaired tissue. Studies suggest that altering the level of inflammation might be beneficial in terms of reducing scarring and improving the rate of healing in chronic wounds. This review looks at the role of the major immune cells in normal and impaired wound healing and strategies that might be used to reduce inflammation in wounds.
Resumo:
Given that there is increasing recognition of the effect that submillimetre changes in collimator position can have on radiotherapy beam dosimetry, this study aimed to evaluate the potential variability in small field collimation that may exist between otherwise matched linacs. Field sizes and field output factors were measured using radiochromic film and an electron diode, for jaw- and MLC-collimated fields produced by eight dosimetrically matched Varian iX linacs (Varian Medical Systems, Palo Alto, USA). This study used nominal sizes from 0.6×0.6 to 10×10 cm215 , for jaw-collimated fields,and from 1×1 to 10×10 cm216 , for MLC-collimated fields, delivered from a zero (head up, beam directed vertically downward) gantry angle. Differences between the field sizes measured for the eight linacs exceeded the uncertainty of the film measurements and the repositioning uncertainty of the jaws and MLCs on one linac. The dimensions of fields defined by MLC leaves were more consistent between linacs, while also differing more from their nominal values than fields defined by orthogonal jaws. The field output factors measured for the different linacs generally increased with increasing measured field size for the nominal 0.6×0.6 and 1×1 cm2 fields, and became consistent between linacs for nominal field sizes of 2×2 cm2 25 and larger. The inclusion in radiotherapy treatment planning system beam data of small field output factors acquired in fields collimated by jaws (rather than the more-reproducible MLCs), associated with either the nominal or the measured field sizes, should be viewed with caution. The size and reproducibility of the fields (especially the small fields) used to acquire treatment planning data should be investigated thoroughly as part of the linac or planning system commissioning process. Further investigation of these issues, using different linac models, collimation systems and beam orientations, is recommended.
Resumo:
This paper reports the findings of a study investigating Chinese English language learners’ perceptions of pragmatics in the EFL learning context in China. A total of 237 Chinese EFL first-year university students participated in the study. A questionnaire and focus group interviews were used to collect data about learners’ pragmatics insights during their English language acquisition process. The findings of the study have provided empirical evidence for English educators and practitioners in China, indicating that there have been substantive changes in Chinese university students’ perceptions of English pragmatics. Except for organizational knowledge, they have a strong desire to acquire English pragmatic knowledge in their English language learning process, and would like to be pragmatically competent language users. This inquiry emphasizes the necessity to introduce pragmatics use and practice, which can effectively facilitate Chinese English learners to achieve pragmatic competence in communication.
Resumo:
Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-alpha and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.
Resumo:
Increased concentrations of biomarkers reflecting myocardial stress such as cardiac troponin I and T and brain natriuretic peptide (BNP) have been observed following strenuous, long-lasting endurance exercise. The pathophysiological mechanisms are still not fully elucidated and the interpretations of increased post-exercise concentrations range from (i) evidence for exercise-induced myocardial damage to (ii) non-relevant spurious troponin elevations, presumably caused by assay imprecision or heterophilic antibodies. Several lines of evidence suggest that inflammatory processes or oxidative stress could be involved in the rise of NT-proBNP and Troponin observed in critically ill patients with sepsis or burn injury. We tested the hypothesis that inflammatory or oxidative stress is also responsible for exercise-induced cardiomyocyte strain in a large cohort of triathletes following an Ironman triathlon. However, the post-race increase in cardiac troponin T and NT-proBNP was not associated with several markers of exercise-induced inflammation, oxidative stress or antioxidant vitamins. Therefore, we clearly need more studies with other inflammatory markers and different designs to elucidate the scientific background for increases in myocardial stress markers following strenuous endurance events.
Resumo:
Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.
Resumo:
Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.
Resumo:
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1β (IL-1β) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin α-hemolysin mediated a substantial proportion of CFT073-triggered IL-1β secretion in mouse but not human macrophages. There was also a more substantial α-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely α-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an α-hemolysin-independent IL-1β secretion pathway in human macrophages. This has important implications for understanding UTI in humans.
Resumo:
This article looks at the various experiences of the film-makers involved in Shine in relation to copyright policy and litigation. Part 1 considers the involvement of Jan Sardi in the campaign to get screenwriters included in the moral rights regime in the film industry. Part 2 recounts the efforts of Scott Hicks to push for directors to acquire royalties under the retransmission scheme in the Copyright Amendment (Digital Agenda) Act 2000 (Cth). Part 3 discusses the contractual dispute between independent producer Jane Scott and the distributor over the gross receipts to the film Shine. Part 4 explores the disputes over the use of Sergei Rachmaninov's music in the film Shine.
Resumo:
Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.
Resumo:
Background: Changing perspectives on the natural history of celiac disease (CD), new serology and genetic tests, and amended histological criteria for diagnosis cast doubt on past prevalence estimates for CD. We set out to establish a more accurate prevalence estimate for CD using a novel serogenetic approach.Methods: The human leukocyte antigen (HLA)-DQ genotype was determined in 356 patients with 'biopsy-confirmed' CD, and in two age-stratified, randomly selected community cohorts of 1,390 women and 1,158 men. Sera were screened for CD-specific serology.Results: Only five 'biopsy-confirmed' patients with CD did not possess the susceptibility alleles HLA-DQ2.5, DQ8, or DQ2.2, and four of these were misdiagnoses. HLA-DQ2.5, DQ8, or DQ2.2 was present in 56% of all women and men in the community cohorts. Transglutaminase (TG)-2 IgA and composite TG2/deamidated gliadin peptide (DGP) IgA/IgG were abnormal in 4.6% and 5.6%, respectively, of the community women and 6.9% and 6.9%, respectively, of the community men, but in the screen-positive group, only 71% and 75%, respectively, of women and 65% and 63%, respectively, of men possessed HLA-DQ2.5, DQ8, or DQ2.2. Medical review was possible for 41% of seropositive women and 50% of seropositive men, and led to biopsy-confirmed CD in 10 women (0.7%) and 6 men (0.5%), but based on relative risk for HLA-DQ2.5, DQ8, or DQ2.2 in all TG2 IgA or TG2/DGP IgA/IgG screen-positive subjects, CD affected 1.3% or 1.9%, respectively, of females and 1.3% or 1.2%, respectively, of men. Serogenetic data from these community cohorts indicated that testing screen positives for HLA-DQ, or carrying out HLA-DQ and further serology, could have reduced unnecessary gastroscopies due to false-positive serology by at least 40% and by over 70%, respectively.Conclusions: Screening with TG2 IgA serology and requiring biopsy confirmation caused the community prevalence of CD to be substantially underestimated. Testing for HLA-DQ genes and confirmatory serology could reduce the numbers of unnecessary gastroscopies. © 2013 Anderson et al.; licensee BioMed Central Ltd.
Resumo:
Efforts to identify genes other than HLA-B27 in AS have been driven by the strength of the evidence from genetic epidemiology studies indicating that HLA-B27, although a major gene in AS, is clearly not the only significant gene operating. This is the case for both genetic determinants of disease-susceptibility and phenotypic characteristics such as disease severity and associated disease features. In this chapter the genetic epidemiology of AS and the gene-mapping studies performed to date will be reviewed and the future direction of research in this field discussed.
Resumo:
The advent of high-throughput SNP genotyping methods has advanced research into the genetics of common complex genetic diseases such as ankylosing spondylitis (AS) rapidly in recent times. The identification of associations with the genes IL23R and ERAP1 have been robustly replicated, and advances have been made in studies of the major histocompatibility complex genetics of AS, and of KIR gene variants and the disease. The findings are already being translated into increased understanding of the immunological pathways involved in AS, and raising novel potential therapies. The current studies in AS remain underpowered, and no full genomewide association study has yet been reported in AS; such studies are likely to add to the significant advances that have already been made.