976 resultados para X-ray crystal structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystals growing from solution, the vapour phase and from supercooled melt exhibit, as a rule, planar faces. The geometry and distribution of dislocations present within the crystals thus grown are strongly related to the growth on planar faces and to the different growth sectors rather than the physical properties of the crystals and the growth methods employed. As a result, many features of generation and geometrical arrangement of defects are common to extremely different crystal species. In this paper these commoner aspects of dislocation generation and configuration which permits one to predict their nature and distribution are discussed. For the purpose of imaging the defects a very versatile and widely applicable technique viz. x-ray diffraction topography is used. Growth dislocations in solution grown crystals follow straight path with strongly defined directions. These preferred directions which in most cases lie within an angle of ±15° to the growth normal depend on the growth direction and on the Burger's vector involved. The potential configuration of dislocations in the growing crystals can be evaluated using the theory developed by Klapper which is based on linear anisotropic elastic theory. The preferred line direction of a particular dislocation corresponds to that in which the dislocation energy per unit growth length is a minimum. The line direction analysis based on this theory enables one to characterise dislocations propagating in a growing crystal. A combined theoretical analysis and experimental investigation based on the above theory is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new hydrazinium uranyl oxalate complex (N2H5)6[(UO2)2(C2O4)5]·2H2O has been prepared and characterized by chemical analysis, infrared, visible spectra and TG-DTA. The single crystal X-ray structure of the complex shows the presence of discrete N2H5+ cations, water molecules and [(UO2)2(C2O4)5]6− anions. In the anion, the linear uranyl groups are coordinated by two chelating bidentate oxalates and one bridging oxalate which lies on the center of symmetry between the two uranyl groups. The coordination polyhedron around each uranium atom is approximately a pentagonal bipyramid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal and molecular structure of a compound 4-cyanobiphenyl-4'-heptylbiphenyl carboxylate (7CBB), which exhibit both monolayer smectic A and nematic phases, have been determined by direct methods using single crystal X-ray diffraction data. The structure is monoclinic with the space group P21/c and Z = 4. The unit cell parameters are a = 16.9550(5) Aring, b = 5.5912(18) Aring, c = 27.5390(9) Aring, agr = 90.000°, β = 93.986(6)°, and γ = 90.000°. Packing of the molecules is found to be precursor to SmC phase, although SmA1 phase is observed on melting. Several strong van der Waals interactions are observed in the core part of the neighboring molecular pairs. Crystal to mesophase transition is probably of reconstitutive nature. Geometry, packing, and nature of crystal-mesophase transition are compared to those in 6CBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ra!. K-absorption spectra of niobium in niobium dichalcogenides. namely NbS, and NbSe, and their first-row transition-metal intercalates Mi P 3N bSz (M = Cr. Mn. Fe. Co. Ni) and Ml#,NbSe2 (M = Fe. CO). have been measured together with those in niobium metal. The spectra of these materials are \er? similar to one another. They reflect the transitions to the partially filled niobium d band with some p character. A bariety of x-ray absorption nearedge structures (XASES) associated with the K edges of intercalated atoms are also presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pivaloyl-L-Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of beta -turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II beta-turn conformations are about 2 kcal mol-1 more stable than Type III structures. A crystallographic study has established the Type II beta-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, beta = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II -turn conformation is stabilized by an intramolecular 4 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are Pro = -57.8°, Pro = 139.3°, Aib = 61.4°, and Aib = 25.1°. The Type II beta-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3d and 4d core-level XPS spectra for CePd3, a mixed-valence system, have been measured. Each spectrum exhibits two sets of structures, each corresponding to one of the valence states of cerium. Thus the usefulness of XPS, which has so far not been used extensively to investigate the mixed-valence cerium systems, is pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structures of a variety of compounds isolated in reactions and elucidated with the help of spectral (uv,ir,nmr and mass) data, have been discussed. In a few cases, the assigned structures were confirmed by x-ray crystal structure analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Arginine ascorbate, C6HIsN40+.C6H706, a 1"1 crystalline complex between the amino acid arginineand the vitamin ascorbic acid, crystallizes in the monoclinic space group P21 with two formula units in a cell of dimensions a = 5.060 (8), b = 9.977 (9), c = 15.330 (13) A, fl = 97.5 (2) °. The structure was solved by the symbolic addition procedure and refined to an R of 0.067 for 1501 photographically observed reflec- tions. The conformation of the arginine molecule in the structure is different from any observed so far. The present structure provides the first description of the ascorbate anion unaffected by the geometrical constraints and disturbances imposed by the requirements of metal coordination. The lactone group and the deprotonated enediol group in the anion are planar and the side chain assumes a conformation which appears to be sterically the most favourable. In the crystals, the arginine molecules and the ascorbate anions aggregate separately into alternating layers. The molecules in the arginine layer are held together by interactions involving a-amino and ~t-carboxylate groups, a situation analogous to that found in proteins. The two layers of unlike molecules are interconnected primarily through the interactions of the side-chain guanidyl group of arginine with the ascorbate ion. These involve a specific ion-pair interaction accompanied by two convergent hydrogen bonds and another pair of nearly parallel hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.