965 resultados para Water treatment plants
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Eichhornia crassipes is one of the main weeds found in aquatic environments, being undesirable for many activities. The aim of this study was to evaluate the translocation of glyphosate and imazamox in E. crassipes. Eight intervals were studied for cutting leaves that received herbicides: 2, 4, 6, 8, 12 and 24 hours after application (HAA), and a treatment with no cutting (untreated). The glyphosate dose was 2,160 g a.e. ha-1 (commercial product - Rodeo) + 0.5% v v-1 Aterbane adhesive spreader and imazamox at 290.4 g i.a. ha-1 (commercial product - Clearcast). The treatments were installed in a completely randomized design with four replications. Glyphosate showed a bad control for all the periods of leaf cutting. The imazamox did not provide control within 12 HAA, while from 24 HAA onward the control was effective. There was not a great mobility of the glyphosate molecule in water hyacinth plants, a period above 24 hours being needed for a satisfactory translocation. For imazamox at least 24 hours were needed after herbicide application for the translocation to occur along with subsequent control.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD <20%. Statistical evaluation aided method validation. The validated method proved to be useful for analysis of organic extracts from effluents and receiving water samples after an SPE extraction step. More specifically, the method enabled detection of the dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
When deer populations become locally overabundant, browsing of ornamental and agronomic plants negatively affects plant establishment, survival, and productivity. Milorganite® is a slow-release, organic fertilizer produced from human sewage. We tested Milorganite® as a deer repellent on chrysanthemums (Chrysanthemums morifolium) in an urban/suburban environment, and soybeans (Gycine max) in a rural agriculture environment. Six beds of chrysanthemums at two sites were monitored for 28 to 35 days. Treatment plants received a top dressing of 104 grams of Milorganite® (1120.9 kg/ha). Milorganite® treated plants had more (P < 0.001) terminal buds and achieved greater height (P < 0.002) compared to controls at one site, however damage observed was similar at the second site. In a second experiment, 0.2-ha plots of soybeans (Glycine max) were planted on five rural properties in northeastern Georgia and monitored for ≥ 30 days. Treated areas received 269 kg/ha of Milorganite®. In 4 of 5 sites, Milorganite® delayed browsing on treated plants from 1 week to > 5 weeks post-planting. Duration of the protection appeared to be related to the difference in deer density throughout most of the study areas. Results of this study indicate Milorganite® has potential use as a deer repellent.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.