825 resultados para Water sensitive urban design WSUD
Resumo:
La tesi nasce dalla volontà di agire sull’area della Darsena di Ravenna, strategica in quanto via d’acqua navigabile che congiunge il mare con il centro città ma dal potenziale ancora poco sfruttato. Il progetto è studiato per essere inserito come catalizzatore urbano, creando spazi di interazione attraverso elementi modulari galleggianti e riconfigurabili per adattarsi a programmi d’uso flessibili; tali elementi si aggregano formando un sistema che ristruttura lo spazio dell’attuale banchina, cambiandone la percezione da barriera a waterfront urbano. La necessità di ottenere una struttura con capacità di crescita e flessibilità programmatica sfocia in un approccio modulare seguendo il principio massima variazione/minimo numero di elementi i cui principi aggregativi si basano sulla tassellazione “Cairo”. Vengono studiate le possibilità di incorporare variazione ed eterogeneità all’interno del sistema senza comprometterne la modularità fino ad integrare percorsi multilivello. La definizione delle morfologie delle parti che compongono i moduli si basano sullo studio dei principi di galleggiamento, stabilità e yacht design: a partire dalla forma dello scafo adatta ai principi di tiling definiti in precedenza, tutte le parti che compongono le varie tipologie di modulo sono progettate cercando continuità e integrazione tettonica (geometrica, strutturale, funzionale e percettiva). Vengono proposte soluzioni integrate sia per le problematiche tipiche delle strutture galleggianti sia per l’inserimento di attività all’interno della soluzione architettonica. Vengono prototipati di una serie di moduli, scelti in modo da dimostrare i principi di ricombinazione, continuità, modularità e tiling.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.
Resumo:
During the process of accessing services provided within urban interior and outer spaces the elderly and disabled individuals encounter with a myriad of problems due to the limitations posed by structured environments. This limitation hinders elderly and disabled individuals from mobility without assistance, which in turn negatively affects their full participation to urban and social life. Rearrangement of urban spaces to meet the needs of elderly and disabled individuals would correspondingly bolster life quality of the entire range of users. Within the scope of present research, as mandated by universal design principles to stick to plans and designs approaches inclusive for all users, it is aimed to conduct evaluations on the use of urban outer spaces situated within Konya City Center. In the hypothetical and theoretical part of this paper, the perception of disability throughout historical process has been examined from a sociological perspective. In addition, concept of universal design, its principles and gravity have also been elaborated. In the part dealing with the case study, outer spaces within Konya City Center have been analyzed with respect to universal design principles and a range of suggestions have been developed.
Resumo:
Green roofs are a maturing application of best management practices for controlling urban stormwater runoff. The majority of green roofs are planted with drought resistant, higher plant species, such as the genus Sedum. However, other plant varieties, such as mosses, may be equally applicable. Residential roofs and natural terrestrial communities were sampled in both Maryland and Tennessee to determine moss community structure and species water composition. This served as a natural analog for potential green roof moss communities. During sampling, 21 species of moss were identified throughout the 37 total sites. The average percent moss cover and water composition across all roof sites was 40.7% and 38.6%, respectively and across all natural sites, 76.7% and 47.7%, respectively. Additional maximum water holding capacity procedures were completed on sedum and 19 of the 21 sampled moss species to assess their individual potential for stormwater absorption. Sedum species on average held 166% of their biomass in water, while moss species held 732%. The results of this study are used as a basis to propose moss species that will improve green roof performance.
Resumo:
Mercury is not an essential element for plant or animal life and it is a potential environmental toxic because of its tendency to form covalent bonds with organic molecules and the high stability of the Hg-C bond. Reports estimate a total mercury concentration in natural waters ranging from 0.2 to 100 ng L-1. Due to this fact, highly sensitive methods are required for direct determination of such extremely low levels. In this work, a rapid and simple method was developed for separation and preconcentration of mercury by flow injection solid phase extraction coupled with on-line chemical vapour generation electrothermal atomic absorption spectrometry. The system is based on chelating retention of the analyte onto the mini column filled with a mesoporous silica functionalized with 1,5 bis (di-2-pyridyl) methylene thiocarbohydrazide. The main aim of this work was to develop a precise and accurate method for the determination of the Hg. Under the optima conditions and 120 s preconcentration time, the detection limit obtained was 0.009 μg L-1, with RSDs 3.7 % for 0.2 μg L-1, 4.8 % for 1 μg L-1 and enrichment factor 4, Furthermore, the method proposed has permitted the determination of Hg with a reduction in the analysis time, the sample throughput was about 18 h-1, low consumption of reagents and sample volume. The method was applied to the determination of Hg in sea water and river water. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, TMDA 54.4 Fortified Lake, and LGC6187 River sediment was addressed. The results showed good agreement with the certified values.
Resumo:
Dissertação de Doutoramento para obtenção do grau de Doutor em Design, dissertação apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.
Resumo:
Oslo, capitale della Norvegia, sta sperimentando un’improvvisa crescita della popolazione e secondo le stime fornite da Statistics Norway si prevede un aumento di 200 000 abitanti entro il 2040. La crescita della popolazione comporterà un rilevante aumento di domanda di acqua e, insieme ad altri fattori quali l’età delle infrastrutture e i cambiamenti climatici, sarà responsabile di una notevole pressione sulle infrastrutture idriche presenti. In risposta alla necessità di tempestivi cambiamenti, il gestore del servizio idrico della città (Oslo VAV) ha deciso di finanziare progetti per migliorare la robustezza delle infrastrutture idriche. Il lavoro di tesi si inserisce all’interno del progetto E3WDM, istituito nel 2005 con lo scopo di definire una gestione più efficiente della risorsa idrica di Oslo. L’obiettivo generale della tesi è la creazione di un modello metabolico attraverso il software UWOT (Makropoulos et al., 2008) con lo scopo di rappresentare i consumi idrici di due tipiche tipologie abitative nella città di Oslo. L’innovazione di questo studio consiste nella definizione e nella modellazione della domanda idrica all’interno delle abitazioni ad un livello di dettaglio molto elevato. Il nuovo approccio fornito da UWOT consente la simulazione di differenti strategie di intervento e la successiva gestione ottimale della risorsa idrica in grado di minimizzare i consumi di acqua, di energia e i costi, compatibilmente con la domanda idrica richiesta. Il lavoro di tesi comprende: -La descrizione del software UWOT, in particolare lo scopo del modello, l’innovativo approccio adottato, la struttura e il procedimento per creare un modello del sistema idrico urbano. -La definizione dei dati richiesti per la simulazione dei consumi idrici all’interno delle abitazioni nella città di Oslo e i metodi utilizzati per raccoglierli -L’applicazione del modello UWOT per la definizione dei trend di consumi idrici e la successiva analisi dei risultati
Resumo:
The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.
Resumo:
Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.
Resumo:
This doctoral dissertation represents a cluster of research activities carried out at the DICAM Department of the University of Bologna during a three-year Ph.D. course. The goal of this research is to show how the development of an interconnected infrastructure network, aimed at promoting accessibility and sustainability of places, is fundamental in a framework of deep urban regeneration. Sustainable urban mobility plays an important role in improving the quality of life of citizens. From an environmental point of view, a sustainable mobility system means reducing fuel discharges and energy waste and, in general, aims to promote low carbon emissions. At the same time, a socially and economically sustainable mobility system should be accessible to everybody and create more job opportunities through better connectivity and mobility. Environmentally friendly means of transport such as non-motorized transport, electric vehicles, and hybrid vehicles play an important role in achieving sustainability but require a planned approach at the local policy level. The aim of this study is to demonstrate that, through a targeted reconnection of road and cycle-pedestrian routes, the quality of life of an urban area subject to degradation can be significantly improved just by increasing its accessibility and sustainability. Starting from a detailed study of the European policies and from the comparison with real similar cases, the case study of the Canal Port of Rimini (Italy) has been analysed within the European project FRAMESPORT. The analysis allowed the elaboration of a multicriterial methodology to get to the definition of a project proposal and of a priority scale of interventions. The applied methodology is a valuable tool that may be used in the future in similar urban contexts. Finally, the whole project was represented by using virtual reality to visually show the difference between the before and after the regeneration intervention.
Resumo:
Low-molecular-weight (LMW) gels are a versatile class of soft materials that gained increasing interest over the last few decades. They are made of a small percentage, often lower than 1.0 %, of organic molecules called gelators, dispersed in a liquid medium. Such molecules have a molecular weight usually lower than 1 kDa. The gelator molecules start to interact after the addition of a trigger, and form fibres, whose entanglement traps the solvent through capillary forces. A plethora of LMW gelators have been designed, including short peptides. Such gelators present several advantages: the synthesis is easy and can be easily scaled up; they are usually biocompatible and biodegradable; the gelation phenomenon can be rationalised by making small variation on the peptide scaffold; they find application in several fields. In this thesis, an overview of several peptide based LMW gels is presented. In each study, the gelation conditions were carefully studied, and the final materials were thoroughly investigated. First, the gelation ability of a fluorinated phenylalanine was assessed, to understand how the presence of a rigid moiety and the presence of fluorine may influence the gelation. In this context, a method for the dissolution of sensitive gelators was studied. Then, the control over the gel formation was studied both over time and space, taking advantage of either the pH-annealing of the gel or the reaction-diffusion of a hydrolysing reagent. Some gels were probed for various applications. Due to their ability of trapping water and organic solvents, we used gels for trapping pollutants dissolved in water, as well as a medium for the controlled release of either fragrances or bioactive compounds. Finally, the interaction of the gel matrix with a light-responsive molecule was assessed to understand wether the gel properties or the interaction of the additive with light were affected.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.