954 resultados para Wall Shear Stress


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of tissue engineered bone constructs can succeed, in vitro fabrication needs to address limitations in large-scale tissue development, including controlled osteogenesis and an inadequate vasculature network to prevent necrosis of large constructs. The tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cell (hMSC)-seeded scaffolds while they are developed in vitro. To further enhance this process, we developed a novel osteogenic growth factors delivery system for dynamically cultured hMSCs using microparticles encapsulated in three-dimensional alginate scaffolds. In light of this increased differentiation, we characterized the endogenous cytokine distribution throughout the TPS bioreactor. An advantageous effect in the ‘outlet’ portion of the uniaxial growth chamber was discovered due to the system’s downstream circulation and the unique modular aspect of the scaffolds. This unique trait allowed us to carefully tune the differentiation behavior of specific cell populations. We applied the knowledge gained from the growth profile of the TPS bioreactor to culture a high-volume bone composite in a 3D-printed femur mold. This resulted in a tissue engineered bone construct with a volume of 200cm3, a 20-fold increase over previously reported sizes. We demonstrated high viability of the cultured cells throughout the culture period as well as early signs of osteogenic differentiation. Taking one step closer toward a viable implant and minimize tissue necrosis after implantation, we designed a composite construct by coculturing endothelial cells (ECs) and differentiating hMSCs, encouraging prevascularization and anastomosis of the graft with the host vasculature. We discovered the necessity of cell to cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. Notably, the results suggested increased osteogenic and angiogenic potential of the encapsulated cells when dynamically cultured in the TPS bioreactor, suggesting a synergistic effect between coculture and applied shear stress. This work highlights the feasibility of fabricating a high-volume, prevascularized tissue engineered bone construct for the regeneration of a critical size defect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

South Asians migrating to the Western world have a 3 to 5-fold higher risk of developing type 2 diabetes and double the risk of cardiovascular disease (CVD) than the background population of White European descent, without exhibiting a proportional higher prevalence of conventional cardiometabolic risk factors. Notably, women of South Asian descent are more likely to be diagnosed with type 2 diabetes as they grow older compared with South Asian men and, in addition, they have lost the cardio-protective effects of being females. Despite South Asian women in Western countries being a high risk group for developing future type 2 diabetes and CVD, they have been largely overlooked. The aims of this thesis were to compare lifestyle factors, body composition and cardiometabolic risk factors in healthy South Asian and European women who reside in Scotland, to examine whether ethnicity modifies the associations between modifiable environmental factors and cardiometabolic risks and to assess whether vascular reactivity is altered by ethnicity or other conventional and novel CVD risks. I conducted a cross-sectional study and recruited 92 women of South Asian and 87 women of White European descent without diagnosed diabetes or CVD. Women on hormone replacement therapy or hormonal contraceptives were excluded too. Age and body mass index (BMI) did not differ between the two ethnic groups. Physical activity was assessed and with self-reported questionnaires and objectively with the use of accelerometers. Cardiorespiratory fitness was quantified with the predicted maximal oxygen uptake (VO2 max) during a submaximal test (Chester step test). Body composition was assessed with skinfolds measured at seven body sites, five body circumferences, measurement of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) with the use of magnetic resonance imaging (MRI) and liver fat with the use MR spectroscopy. Dietary density was assessed with food frequency questionnaires. Vascular response was assessed by measuring the response to acetylcholine and sodium nitroprusside with the use of Laser Doppler Imaging with Iontophoresis (LDI-ION) and the response to shear stress with the use of Peripheral Arterial Tonometry (EndoPAT). The South Asian women exhibited a metabolic profile consistent with the insulin resistant phenotype, characterised by greater levels of fasting insulin, lower levels of high density lipoprotein (HDL) and higher levels of triglycerides (TG) compared with their European counterparts. In addition, the South Asians had greater levels of glycated haemoglobin (HbA1c) for any given level of fasting glucose. The South Asian women engaged less time weekly with moderate to vigorous physical activity (MVPA) and had lower levels of cardiorespiratory fitness for any given level of physical activity than the women of White descent. In addition, they accumulated more fat centrally for any given BMI. Notably, the South Asians had equivalent SAT with the European women but greater VAT and hepatic fat for any given BMI. Dietary density did not differ among the groups. Increasing central adiposity had the largest effect on insulin resistance in both ethic groups compared with physical inactivity or decreased cardiorespiratory fitness. Interestingly, ethnicity modified the association between central adiposity and insulin resistance index with a similar increase in central adiposity having a substantially larger effect on insulin resistance index in the South Asian women than in the Europeans. I subsequently examined whether ethnic specific thresholds are required for lifestyle modifications and demonstrated that South Asian women need to engage with MVPA for around 195 min.week-1 in order to equate their cardiometabolic risk with that of the Europeans exercising 150 min.week-1. In addition, lower thresholds of abdominal adiposity and BMI should apply for the South Asians compared with the conventional thresholds. Although the South Asians displayed an adverse metabolic profile, vascular reactivity measured with both methods did not differ among the two groups. An additional finding was that menopausal women with hot flushing of both ethnic groups showed a paradoxical vascular profile with enhanced skin perfusion (measured with LDI-ION) but decreased reactive hyperaemia index (measured with EndoPAT) compared with asymptomatic menopausal women. The latter association was independent of conventional CVD risk factors. To conclude, South Asian women without overt disease who live in Scotland display an adverse metabolic profile with steeper associations between lifestyle risk factors and adverse cardiometabolic outcomes compared with their White counterparts. Further work in exploring ethnic specific thresholds in lifestyle interventions or in disease diagnosis is warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resuspension of the top few sediment layers of tidal mud flats is known to enhance planktonic biomass of microbiota (benthic diatoms and bacteria). This process is mainly controlled by tidal shear stress and cohesiveness of mud, and is also influenced by bioturbation activities. Laboratory experiments in a race track flume were performed to test the interactive effects of these factors on both the critical entrainment and resuspension kinetics of microbiota from silt-clay sediments from the Marennes-Oleron Bay, France. The marine snail Hydrobia ulvae was used to mimic surface bioturbation activities. As expected, the kinetics of microbial resuspension versus shear stress were largely controlled by the cohesiveness of silt-clay sediments. However, our results indicate that the effect of surface tracking by H. ulvae on microbial resuspension was clearly dependent on the interaction between sediment cohesiveness and shear velocity. Evidence was also found that microphytobenthos and bacteria are not simultaneously resuspended from silt-clay bioturbated sediments. This supports the theory that diatoms within the easily eroded mucus matrix behave actively and bacteria adhering to fine silt particles eroded at higher critical shear velocities behave passively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduzione: L’intervento di Fontan comporta un aumento istantaneo della pressione venosa centrale che causa, nel medio-lungo termine, una forma di epatopatia specifica detta FALD. Il monitoraggio della FALD è complesso ma potrebbe consentire di bloccarne o rallentarne l’insorgenza. Lo studio ha valutato l’efficacia delle modalità di monitoraggio non invasivo. Materiale e metodi: Sei pazienti (età media 24 anni) operati presso l’IRCCS Azienda Ospedaliero Universitaria di Bologna sono stati sottoposti a RMN 4D-Flow e ad Ecodoppler epatico. Sono stati raccolti i dati anagrafici, morfologici, anamnestici e i markers sierologici per il calcolo degli scores MELD-XI, APRI, FIB4, i valori di Shear Stress assiale e circonferenziale e gli indici di pulsatilità e resistenza delle arterie epatica e renale. Risultati: Il tempo trascorso tra la Fontan e lo studio è stato di 17,8 anni. Età media alla Fontan 6,8 anni. Tutti i pazienti avevano un quadro compatibile con epatopatia. I markers sierologici e gli scores MELD-XI,APRI e FIB4 si sono dimostrati di scarsa utilità. All’ecografia tutti i pazienti avevano ecostruttura irregolare, splenomegalia e valori elevati di pulsatilità e resistenza dell’arteria epatica e splenica. La rigidità epatica media è stata di 12,4 Kpa. Alla RMN 4DF lo Shear stress assiale è stato massimo a livello del condotto (0,16 Pa) e minimo a livello delle vene sovra epatiche (0,05 Pa). Lo Shear Stress si è mostrato massimo nei pazienti con emodinamica sfavorevole e peggior quadro ecografico addominale, evidenziando aree di inefficienza energetica. Conclusioni: La combinazione delle diagnostiche di imaging non invasive potrebbe rivelarsi adeguata per il monitoraggio della FALD. In particolare, la RMN 4D Flow potrebbe rivelare aree di inefficienza energetica predisponenti alla FALD. Questo potrebbe indirizzare in modo specifico la terapia dei pazienti operati o addirittura indurre la modifica del disegno della Fontan verso forme più efficienti.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES The goal of this study was to determine whether wall stress at rest and during stress could explain the influence of left ventricular (LV) morphology on the accuracy of dobutamine stress echocardiography (DSE). BACKGROUND The sensitivity of DSE appears to be reduced in patients with concentric remodeling, but the cause of this finding is unclear. METHODS We studied 161 patients without resting wall motion abnormalities who underwent DSE and coronary angiography. Patients were classified into four groups according to relative wan thickness (normal

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S. aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS. Although not essential, deletion of all three LCP proteins severely impairs cell division. We show here that VraSR-dependent CWSS expression was up to 250-fold higher in single, double and triple LCP mutants than in wild type S. aureus in the absence of external stress. The LCP triple mutant was virtually depleted of wall teichoic acids (WTA), which could be restored to different degrees by any of the single LCP proteins. Subinhibitory concentrations of tunicamycin, which inhibits the first WTA synthesis enzyme TarO (TagO), could partially complement the severe growth defect of the LCP triple mutant. Both of the latter findings support a role for S. aureus LCP proteins in late WTA synthesis, as in Bacillus subtilis where LCP proteins were recently proposed to transfer WTA from lipid carriers to the cell wall peptidoglycan. Intrinsic activation of the CWSS upon LCP deletion and the fact that LCP proteins were essential for WTA-loading of the cell wall, highlight their important role(s) in S. aureus cell envelope biogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comparative ultrastructural observations are presented of the distended bladder of a hibernating dormouse (Muscardinus avellanarius) and a relaxed organ taken from an active animal. The distended bladder of the hibernating animal has an extremely thin wall lined with a three-layer urothelium. An osmiophilic coat lines the luminal surface of the urothelium in the hibernating animal, but it is very thin indeed in the specimen from the active dormouse. In the urothelium of the distended bladder, a larger number of fusiform vesicles (FVs, typical structures of the urothelium with asymmetric unit membrane) is found. On the contrary, lysosomes, multivesicular bodies, and interdigitation of plasma membrane between adjacent cells are all more frequent in the relaxed bladder of the active dormouse. Results suggest that hibernating animals can be a useful model for investigating the biology of epithelial cells in the mammalian bladder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.