815 resultados para Volatility clustering
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
Includes bibliography
Resumo:
Many topics related to association mining have received attention in the research community, especially the ones focused on the discovery of interesting knowledge. A promising approach, related to this topic, is the application of clustering in the pre-processing step to aid the user to find the relevant associative patterns of the domain. In this paper, we propose nine metrics to support the evaluation of this kind of approach. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Some experiments were done in order to present how the metrics can be used and their usefulness. © 2013 Springer-Verlag GmbH.
Resumo:
Includes bibliography
Resumo:
Using a new database of quarterly data for 21 countries of Latin America and the Caribbean for the 1990-2012 period, this document shows that the duration of GDP contractions appears to be a rather robust indicator of real volatility, and is negatively correlated with long run growth in Latin America and the Caribbean during the period. These results are consistent with different theoretical hypotheses in the literature that relate the duration of GDP contractions with economic growth. They also show that the relationship between real volatility and economic growth in the region is robust to the inclusion of external variables that control for external uncertainty and volatility.
Resumo:
This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Issues related to association mining have received attention, especially the ones aiming to discover and facilitate the search for interesting patterns. A promising approach, in this context, is the application of clustering in the pre-processing step. In this paper, eleven metrics are proposed to provide an assessment procedure in order to support the evaluation of this kind of approach. To propose the metrics, a subjective evaluation was done. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Besides, the metrics do the users think about aspects related to the problems and provide a flexible way to solve them. Some experiments were done in order to present how the metrics can be used and their usefulness.
Resumo:
In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.
Resumo:
The exponential growth of the Internet, coupled with the increasing popularity of dynamically generated content on the World Wide Web, has created the need for more and faster Web servers capable of serving the over 100 million Internet users. Server clustering has emerged as a promising technique to build scalable Web servers. In this article we examine the seminal work, early products, and a sample of contemporary commercial offerings in the field of transparent Web server clustering. We broadly classify transparent server clustering into three categories.
Resumo:
Heterogeneous waveband switching (HeteroWBS) in WDM networks reduces the network operational costs. We propose an autonomous clustering-based HeteroWBS architecture to support the design of efficient HeteroWBS algorithms under dynamic traffic requests in such a network.
Resumo:
In this paper, we propose a Layered Clustering Hierarchy (LCH) communication protocol for Wireless Sensor Networks (WSNs). The design of LCH has two goals: scalability and energy-efficiency. In LCH, the sensor nodes are organized as a layered clustering structure. Each layer runs a distributed clustering protocol. By randomizing the rotation of cluster heads in each layer, the energy load is distributed evenly across sensors in the network. Our simulations show that LCH is effective in densely deployed sensor networks. On average, 70% of live sensor nodes are involved directly in the clustering communication hierarchy. Moreover, the simulations also show that the energy load and dead nodes are distributed evenly over the network. As studies prove that the performance of LCH depends mainly on the distributed clustering protocol, the location of cluster heads and cluster size are two critical factors in the design of LCH.