958 resultados para Variación terminológica
Resumo:
p.263-268
Resumo:
p.53-61
Resumo:
El objetivo de esta tesis fue estudiar los efectos del genotipo, el ambiente y su interacción sobre peso de cáscara y aptitud al descascarado de los granos; y la composición acídica, contenido de ceras, tocoferoles y fosfolípidos y estabilidad oxidativa del aceite de girasol; así como de las relaciones intrínsecas entre dichos variables con rendimiento en aceite y peso de aquenios, identificando etapas fenológicas de máxima respuesta de estas características de calidad al efecto combinado de factores ambientales, dentro de los cuales se incluyeron a la productividad media y a características de suelo y climáticas, registrados para cada una de las etapas fenológicas de cada cultivar en cada localidad. Se utilizó un diseño de bloques al azar con 5 cultivares sembrados en 11 localidades de Argentina, distribuidas en las áreas NEA, OESTE y SUR. Se aplicaron técnicas de ANAVA factorial, regresión múltiple, análisis de sendero y esquemas de causa-efecto para estimar la importancia relativa de las fuentes de variación e identificar los factores ambientales de mayor efecto sobre estas características. Se utilizó análisis de conglomerados y componentes principales para el estudio de interrelaciones entre las características de calidad y factores ambientales. Aunque se observó variabilidad entre genotipos, el efecto del ambiente sobre la variabilidad total fue superior a la contribución del componente genético para todos los atributos examinados, con la excepción de porcentaje de cáscara y concentración de ceras. No se observó relación entre el rendimiento y las características estudiadas. Los factores ambientales de mayor efecto sobre las características de calidad fueron temperatura mínima, PAR, agua útil, precipitaciones, humedad relativa y nitrógeno, dependiendo el efecto individual, de cada factor, de su interrelación y de la etapa fenológica que se considere. Las condiciones ambientales durante las etapas R1-R5.5 y R5.5+300°Cd lograron explicar gran parte de la variabilidad total.
Resumo:
p.179-191
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
En este documento se presentan los avances del proyecto de investigación “El concepto de función en las matemáticas escolares” realizado en cooperación entre el Programa de Educación Formal para Adultos del ITM y la Universidad de Antioquia. Se retoma la tesis propuesta por Posada & Villa,(2006) en donde se afirma que una didáctica del concepto de función debe abordar los aspectos de la variación, la modelación y los sistemas de representación. Con base en este plateamiento se construye una propuesta didáctica que pretende potenciar el entendimiento de algunos aspectos de la función lineal y cuadrática.
Resumo:
El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.
Resumo:
Este documento se usa el constructo teórico Humans-with-Media para analizar una situación construida con el software Geogebra. La situación muestra un posible entendimiento de la función derivada a partir del reconocimiento de la “función tasa de variación”.
Resumo:
Se presenta un avance de una investigación de tipo cualitativo en la cual se busca identificar las características de razonamiento presentadas en estudiantes de grado quinto al momento de enfrentarse a situaciones de tipo variacional; dichas características se discuten a la luz del marco conceptual para la covariación propuesto por Carlson, Jacobs, Coe, Larsen, y Hsu (2003). Desde las situaciones, se desprenden algunas implicaciones y recomendaciones para su implementación en el aula de clase, específicamente para un acercamiento a nociones como: función y tasa de variación, las cuales se encuentran en las bases propias del razonamiento covariacional y pueden abordarse desde los primeros grados de escolaridad como una manera de crear cimientos en la comprensión de los conceptos más relevantes del cálculo.
Resumo:
Este documento se elabora a partir de una revisión inicial de literatura donde se analizaron los Lineamientos Curriculares, los Estándares Básicos de Competencia y algunos estudios e investigaciones en el campo de la variación y la trigonometría. Desde los elementos teóricos observados en la literatura se hizo indispensable un análisis de algunos libros de texto frente al tipo de ejercicios que se proponía para abordar la trigonometría plana; de este análisis surgió la necesidad de diseñar propuestas alternativas en las cuales se haga hincapié en la visualización de relaciones funcionales entre los ángulos y los lados de un triángulo; de este modo, se espera aportar elementos para superar la idea de que las relaciones trigonométricas son “fórmulas” para calcular datos fijos y desconocidos de un triángulo.
Resumo:
En el siguiente escrito se describe una propuesta didáctica para introducir a los estudiantes al concepto matemático de la derivada. Esta propuesta se basa en la idea de variación la cual es representada en contextos numéricos, físicos y gráficos. La representación y manipulación de las ideas matemáticas en juego durante el desarrollo de la propuesta se ven apoyadas en el uso de dispositivos tecnológicos tales como calculadoras gráficas y un sensor de movimiento.
Resumo:
En este escrito se presentan resultados de un estudio socioepistemológico para diseñar unidades didácticas basadas en prácticas y verificar la efectividad de organizadores de contenido matemático en su diseño, en el área de Precálculo. En el estudio se buscó determinar condiciones y situaciones para la generación de aprendizajes matemáticos asociados a las nociones de variación y cambio. Se identificó que la relación entre las experiencias de los estudiantes, la naturaleza variacional de las situaciones y la matemática en actividades de naturaleza social fueron un factor determinante en el éxito en la resolución de los diseños de aprendizaje.
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.
Resumo:
Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.