692 resultados para Unconsolidated Sands
Resumo:
Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20?N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous-Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.
Resumo:
Janczyk-Kopikowa (1966): The series of the organic deposits, developed in the vicinity of Golkow near Warsaw as oil shales and peats, was laid down in a grough valley and now rests on the deposits of the Middle Polish Glaciation (Riss). The organic deposits are overlain by the fluviale deposits of the North Polish Glaciation (Würm). The locality Golkow occurs beyond the extent of the continental glacier of this glaciation. Polen analysis completed by microfloristic examinations allows to determine the age of the organic series that is thought to be Eemian. The pollen diagram from Golkow does not call in question the stratigraphical position of the deposits investigated mainly due to its characteristic features such as minimum content of coniferous trees in the climatic optimum - about 5%, high percentage of Corylus - 77.5% and well developed phase of hornbeam. It may be well compared with other Eemian diagrams from the area of Poland and reveals much similar features. The development of vegetation at Golkow has depended upon the prevailing climate. At first, the cool climate brings about the development of plants having small thermal requirements. Here belong thin, park-like forests with pine and birch (Pinus, Betula) accompanied by the heliophilic plants such as Hippohäe and Ephedra. Improvement of climate that becomes warm and humid provides for development of deciduous forests prevailing in the climatic optimum, of the interglacial. Decrease of temperature causes a repeated change in the type of forest. This latter changes into coniferous forest with prevailing spruce (Picea) and fir (Abies) at the beginning, and then with pine (Pinus) and birch (Betula). During the Eemian Interglacial, the development of plants at Golkow terminates with a new and long-lasting predominance of pine-birch forests. However, such a longevity may be apparent only. Apparent character of this phenomenon is proved by a fact that the pollen spectra of the warm climatic periods have found their reflex in the oil shale that increased considerably slower than the layers off feebly decomposed peat evidencing the existence of cool pine-birch forests from the decline of the Interglacial. The water basin, in which the polen grains were laid down from surrounding plants is characterized by a calm sedimentation as proved by the occurrence of the oil shale. An insignificant water flow left behind some thin sand laminae. The not too deep basin becomes shallower owing to the growing water vegetation, and marshy vegetation. The growing of the plants causes a complete shallowing of the basin and formation of peat bog in situ, as proved by the peat beds occurring in the section. ---- Gadomska (1966): In the vicinity of Golków a series of organic deposits occurs amounting to 6.5-9.3 m in thickness, and consisting of oil shales, lacustrine silts and sands, as well as peats and peaty silts. The organic deposits fill up an old, small, but fairly deep lake basin, probably of finger-lake origin. It may be seen to-day as a slight lowering of the relief, filled up with soaked ground, stretching from north to south. On the basis of palaeobotanical examinations the organic deposits considered are of Eemian Interglacial age (Z. Janczyk-Kopikowa, 1063). The lower part of the organic series consists of a compact oil shale horizon, the maximum thickness of which may attain up to 8 m. The oil shales contain particularly in their upper part, numerous intercalations of arenaceous silts, dark grey or black in colour, or of sands mainly of lacustrine provenance. At the top of the oil shales are found peats, up to 2.5 m in thickness, covered by black, humus silts with numerous plant remains. The Eemian Interglacial deposits are covered by a series of fluviatile sands belonging partly to the Baltic Glaciation (bottom part of the series), partly to the Holocene (top part of the series). The thickness of the sands is 0.5-3.7 m. Higher up, there are found the Holocene and present-day deposits developed as clayey alluvion, or arenaceous slide rocks, or arenaceous-silty soil.
Resumo:
yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.
Resumo:
The geological structure of a Holocene sand spit system and the adjacent Weichselian glacial deposits in the northeastern part of Schleswig-Holstein have been investigated and presented in a geological map. Thin meltwater deposits overlie the glacial tills in the area of the former Beverö lsland in the west. To its north and northeast, the modern Sand spit system is present. Its basal transgression horizon is composed mainly of gravels and boulders, and directly overlie the Pleistocene deposits. Further up the succession, fine graind sands are present, in turn overlain by the coarser grained sands of the barrier bar. To the east, under the protection of the sand spit, gyttyas and peats which sometimes attain large thicknesses have been deposited under lacustrinellagoonal conditions. Closer to the shore, these sediments are covered by marine sands.
Resumo:
A depression filled with Late Glacial and Holocene sediments was excavated during the geological exploration and recovery of a dump area near Tessin close to Rostock, and initiated the studies of the present paper. Pebble analysis of three exposed or respectively drilled till horizons as well as pollenanalytical, carpological and faunistical studies carried out allow the stratigraphical subdivision of the Quaternary sequence of the dump area. The basal till was probably the result of dead ice decay, and was lithostratigraphically assigned to the Pomerian Stage (qw2). The palynological results of boreholes RKS 19/93 and A/92 reveal pre-Allerod and other sediments instead of the expected interweichselian deposits. Based on the palynological and carpological findings, we correlated the beginning of the late glacial development in the locality with the end of the Meiendorf-lnterstadial sensu Menke in Bock et al. (1985, doi:10.3285/eg.35.1.18). The limnic-telmatic sedimentation could be observed pollen floristically probably starting with the Meiendorf-lnterstadial (Hippophae-Betula nana-phase) followed by the Bolling-(Betula nana-B. alba s.l.-Artemisia-Helianthemum-Poaceae-phase) and the Allerad-lnterstadial [Betula alba s.l.-(Pinus)-Cyperaceae-phase] lasting up to the Younger Dryas (Juniperus-Artemisia-Poaceae-phase). Sedimentation closed during the Younger Dryas with the accumulation of fine sands. It was reactivated later during the Holocene due to the anthropogene influence (Older and Younger Subatlantic, dampness of the depression by clearing).
Resumo:
Field investigations of the Laptev Sea shoreface morphology were carried out (1) off erosional shores composed of unconsolidated sediments, (2) off the modern delta shores of the Lena River, and (3) off rocky shores. It was found that profiles off erosional shores had a concave shape. This shape is not well described by commonly applied power functions, a feature, which is in disagreement with the generally accepted concept of the equilibrium shape of shoreface profiles. The position of the lower shoreface boundary is determined by the elevation of the coastal lowland inundated during the last transgression (at -5 to -10 m) and may easily be recognized by a sharp, an order of magnitude decrease in the mean inclination of the sea floor. The mean shoreface inclination depends on sediment grain-size and ranges from 0.0022 to 0.033. The concave shape of the shoreface did not change substantially during the last 20-30 years, which indicates that shoreline retreat did not slow down and hence suggests continued intensive coastal erosion in the 21st century. The underwater part of the Lena River delta extends up to 35 km offshore. Its upper part is formed by a shallow and up to 18-km wide bench, which reaches depths of 2-3 m along the outer edge. The evolution of the delta was irregular. Whereas some parts of the delta are advancing rapidly (58 m/year), other parts are eroding. Comparison of measured profiles with older bathymetric data gave an opportunity to evaluate the changes of the underwater delta over past decades. Bathymetric surveys of the seabed around the delta can thus contribute towards a quantification of the sediment budget of the river-sea system. In addition, some sections of the Laptev Sea coast are composed of bedrock that has a comparatively low resistance to wave erosion. These sections may supply a considerable amount of sediment, especially if the cliffs are high. This source must therefore also be taken into account when assessing the contribution of shore erosion to the Laptev Sea sediment budget.
Resumo:
An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).
Resumo:
A mass budget was constructed for organic carbon on the upper slope of the Middle Atlantic Bight, a region thought to serve as a depocenter for fine-grained material exported from the adjacent shelf. Various components of the budget are internally consistent, and observed differences can be attributed to natural spatial variability or to the different time scales over which measurements were made. The flux of organic carbon to the sediments in the core of the depocenter zone, at a water depth of 1000 m, was measured with sediment traps to be 65 mg C m**-2 day**-1, of which 6-24 mg C m**-2 day**-1 is buried. Oxygen fluxes into the sediments, measured with incubation chambers attached to a free vehicle lander, correspond to total carbon remineralization rates of 49-70 mg C m**-2 day**-1. Carbon remineralization rates estimated from gradients of Corg within the mixed layer, and from gradients of dissolved ammonia and phosphate in pore waters, sum to only 4-6 mg C m**-2 day**-1. Most of the Corg remineralization in slope sediments is mediated by bacteria and takes place within a few mm of the sediment-water interface. Most of the Corg deposited on the upper slope sediments is supplied by lateral transport from other regions, but even if all of this material were derived from the adjacent shelf, it represents <2% of the mean annual shelf productivity. This value is further lowered by recognizing that as much as half of the Corg deposited on the slope is refractory, having originated by reworking from older deposits. Refractory Corg arrives at the sea bed with an average 14C age 600-900 years older than the pre-bomb 14C age of DIC in seawater, and has a mean life in the sediments with respect to biological remineralization of at least 1000 years. Labile carbon supplied to the slope, on the other hand, is rapidly and (virtually) completely remineralized, with a mean life of < 1 year. Carbon-14 ages of fine-grained carbonate and organic carbon present within the interstices of shelf sands are consistent with this material acting as a source for the old carbon supplied to the slope. Winnowing and export of reworked carbon may contribute to the often-described relationship between organic carbon preservation and accumulation rate of marine sediments.
Resumo:
At the NW-slope of Eckernforder Bay (Western Baltic) between 14 and 21 m water depth 7 sand cores were taken with a vibrocorer. The cores were between 85 and 250 cm long. The sand was analysed for grain size distribution, proportions of organic carbon and carbonate, and contents of microfossils. The radiometric age and stable carbon isotope ratios were determined on organic material from 14 sample. With regard to benthic foraminifera and other microorganisms four different types of depositional conditions could be distinguished: Types 1 and 2: two types of offshore sand areas. Type 3: lagoon and nearshore. Type 4: subaerial or limnic. Using sedimentological and geochemical parameters two formation areas could be distinguished with the aid of a discriminant analysis: offshore (types 1 and 2) and nearshore (types 3 and 4). A juxtaposition of core sections indicated two distinct profiles. Their ages fit into the picture of the assumed postglacial sea-level rise. The lagoon- and nearshore sands are interpreted as the result of sea-level stagnation at 17-18 m below present sea-level. The accumulation rates of the sand in the offshore areas are, with a maximum of 0.15 mm/yr., an order of magnitude smaller than in the mud areas, located several hundred metres away.
Resumo:
From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.
Resumo:
One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst. Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu. DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.