864 resultados para Tree based intercrop systems
Resumo:
Macroscopic marine algae, typically known as macroalgae or seaweeds, form an important living resource of the oceans, as primary producers. People have collected seaweeds for food, both for humans and animals for millennia. They also have been a source of nutrient rich fertilizers, as well as a source of gelling agents known as phycocolloids. More recently macroalgae are playing significant roles in medicine and biotechnology. Although Biotechnology and in particular marine biotechnology may have different meanings for different people, under the present context we will consider a broader definition. Marine biotechnology consists on the use of biological knowledge and/or the application of biological techniques on marine organisms, for the development of products in some way beneficial for humans. Seaweed aquaculture is, therefore a biotechnology activity. It is also one that can allow for further development of the industry. Today, seaweed cultivation techniques are standardized, routine and economical. Several factors, including understanding the environmental regulation of life histories and asexual propagation of thalli, are responsible for the success of large-scale seaweed cultivation. Presently, seaweed aquaculture represents approximately 23% of the world’s aquaculture production, including fish, crustaceans and other animals. A promising approach for the development of seaweed aquaculture, and aquaculture in general, is the integrated multi-trophic aquaculture (IMTA). In these systems, fed-aquaculture is combined with extractive organisms like bivalves and/or algae. The constraints and advantages of IMTA will be discussed. In particular, land based IMTA systems allow for much greater environmental and input controls. Traceability, security of supply, high-quality standards and safety should be the future of seaweed aquaculture and contribute for the development of marine biotechnology.
Resumo:
[EU]Testu bat koherente egiten duten arrazoiak ulertzea oso baliagarria da testuaren beraren ulermenerako, koherentzia eta koherentzia-erlazioak testu bat edo gehiago koherente diren ondorioztatzen laguntzen baitigu. Lan honetan gai bera duten testu ezberdinen arteko koherentziazko 3 Cross Document Structure Theory edo CST (Radev, 2000) erlazio aztertu eta sailkatu dira. Hori egin ahal izateko, euskaraz idatziriko gai berari buruzko testuak segmentatzeko eta beraien arteko erlazioak etiketatzeko gidalerroak proposatzen dira. 10 testuz osaturiko corpusa etiketatu da; horietako 3 cluster bi etiketatzailek aztertu dute. Etiketatzaileen arteko adostasunaren berri ematen dugu. Koherentzia-erlazioak garatzea oso garrantzitsua da Hizkuntzaren Prozesamenduko hainbat sistementzat, hala nola, informazioa erauzteko sistementzat, itzulpen automatikoarentzat, galde-erantzun sistementzat eta laburpen automatikoarentzat. Etorkizunean CSTko erlazio guztiak corpus esanguratsuan aztertuko balira, testuen arteko koherentzia- erlazioak euskarazko testuen prozesaketa automatikoa bideratzeko lehenengo pausua litzateke hemen egindakoa.
Resumo:
This dissertation investigates customer behavior modeling in service outsourcing and revenue management in the service sector (i.e., airline and hotel industries). In particular, it focuses on a common theme of improving firms’ strategic decisions through the understanding of customer preferences. Decisions concerning degrees of outsourcing, such as firms’ capacity choices, are important to performance outcomes. These choices are especially important in high-customer-contact services (e.g., airline industry) because of the characteristics of services: simultaneity of consumption and production, and intangibility and perishability of the offering. Essay 1 estimates how outsourcing affects customer choices and market share in the airline industry, and consequently the revenue implications from outsourcing. However, outsourcing decisions are typically endogenous. A firm may choose whether to outsource or not based on what a firm expects to be the best outcome. Essay 2 contributes to the literature by proposing a structural model which could capture a firm’s profit-maximizing decision-making behavior in a market. This makes possible the prediction of consequences (i.e., performance outcomes) of future strategic moves. Another emerging area in service operations management is revenue management. Choice-based revenue systems incorporate discrete choice models into traditional revenue management algorithms. To successfully implement a choice-based revenue system, it is necessary to estimate customer preferences as a valid input to optimization algorithms. The third essay investigates how to estimate customer preferences when part of the market is consistently unobserved. This issue is especially prominent in choice-based revenue management systems. Normally a firm only has its own observed purchases, while those customers who purchase from competitors or do not make purchases are unobserved. Most current estimation procedures depend on unrealistic assumptions about customer arriving. This study proposes a new estimation methodology, which does not require any prior knowledge about the customer arrival process and allows for arbitrary demand distributions. Compared with previous methods, this model performs superior when the true demand is highly variable.
Resumo:
International audience
Resumo:
The past few decades have witnessed the widespread adaptation of wireless devices such as cellular phones and Wifi-connected laptops, and demand for wireless communication is expected to continue to increase. Though radio frequency (RF) communication has traditionally dominated in this application space, recent decades have seen an increasing interest in the use of optical wireless (OW) communication to supplement RF communications. In contrast to RF communication technology, OW systems offer the use of largely unregulated electromagnetic spectrum and large bandwidths for communication. They also offer the potential to be highly secure against jamming and eavesdropping. Interest in OW has become especially keen in light of the maturation of light-emitting diode (LED) technology. This maturation, and the consequent emerging ubiquity of LED technology in lighting systems, has motivated the exploration of LEDs for wireless communication purposes in a wide variety of applications. Recent interest in this field has largely focused on the potential for indoor local area networks (LANs) to be realized with increasingly common LED-based lighting systems. We envision the use of LED-based OW to serve as a supplement to RF technology in communication between mobile platforms, which may include automobiles, robots, or unmanned aerial vehicles (UAVs). OW technology may be especially useful in what are known as RF-denied environments, in which RF communication may be prohibited or undesirable. The use of OW in these settings presents major challenges. In contrast to many RF systems, OWsystems that operate at ranges beyond a few meters typically require relatively precise alignment. For example, some laser-based optical wireless communication systems require alignment precision to within small fractions of a degree. This level of alignment precision can be difficult to maintain between mobile platforms. Additionally, the use of OW systems in outdoor settings presents the challenge of interference from ambient light, which can be much brighter than any LED transmitter. This thesis addresses these challenges to the use of LED-based communication between mobile platforms. We propose and analyze a dual-link LED-based system that uses one link with a wide transmission beam and relaxed alignment constraints to support a more narrow, precisely aligned, higher-data-rate link. The use of an optical link with relaxed alignment constraints to support the alignment of a more precisely aligned link motivates our exploration of a panoramic imaging receiver for estimating the range and bearing of neighboring nodes. The precision of such a system is analyzed and an experimental system is realized. Finally, we present an experimental prototype of a self-aligning LED-based link.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
Introducción: El dolor lumbar y los desórdenes músculo esqueléticos comprometen la salud y la calidad de vida de los trabajadores, pueden poner en riesgo el futuro laboral de las personas. bjetivo: Estimar la prevalencia de dolor lumbar y los posibles factores biomecánicos asociados en el personal operativo y administrativo en una empresa manufacturera de jabón en Bogotá, en el año 2016 Metodología: Estudio de corte transversal donde se evaluó el riesgo biomecánico y la prevalencia del dolor lumbar en personal administrativo (138) y operativo (165); se utilizó como instrumento el ERGOPAR validado en España. Se revisó la asociación utilizando la prueba Chi Cuadrado de Pearson, con un nivel de significación α 0.05 Resultados: 303 trabajadores de una empresa manufacturera de jabón en Bogotá, donde predominó el género masculino (51,82%) y la población adulta media entre 30-39 años (57,42%). La prevalencia del dolor lumbar en la población fue de 61,39% (186). La edad no se asoció estadísticamente al dolor lumbar. Se encontró asociación estadística entre el síntoma dolor lumbar y extensión de cuello (p=0,05 OR1.95 IC 1.33-2.88), así como con agarrar o sujetar objetos (p= 0,036. OR 2.3 IC 1.59-3.51) y con las exigencias físicas laborales (p= 0.001 OR 1.99 IC 1.31-3.02). Conclusiones: La población estudiada presentó una alta prevalencia de dolor lumbar, con predominio en personal que realiza labores operativas, y del género femenino. La adopción de posturas de extensión del cuello y la sujeción o agarre de objetos son factores asociados directamente con la aparición de lumbalgia.
Resumo:
ABSTRACT: Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.
Resumo:
In this dissertation, we focus on developing new green bio-based gel systems and evaluating both the cleaning efficiency and the release of residues on the treated surface, different micro or no destructive techniques, such as optical microscopy, TGA, FTIR spectroscopy, HS-SPME and micro-Spatially Offset Raman spectroscopy (micro-SORS) were tested, proposing advanced analytical protocols. In the first part, a ternary PHB-DMC/BD gel system composed by biodiesel, dimethyl carbonate and poly-3 hydroxybutyrate was developed for cleaning of wax-based coatings applied on indoor bronze. The evaluation of the cleaning efficacy of the gel was carried out on a standard bronze sample which covered a layer of beeswax by restores of Opificio delle Pietre Dure in Florence, and a real case precious indoor bronze sculpture Pulpito della Passione attributed to Donatello. Results obtained by FTIR analysis showed an efficient removal of the wax coating. In the second part, two new kinds of combined gels based on electrospun tissues (PVA and nylon) and PHB-GVL gel were developed for removal of dammar varnish from painting. The electrospun tissue combined gels exhibited good mechanical property, and showed good efficient in cleaning over normal gel. In the third part, green deep eutectic solvent which consists urea and choline chloride was proposed to produce the rigid gel with agar for the removal of proteinaceous coating from oil painting. Rabbit glue and whole egg decorated oil painting mock-ups were selected for evaluating its cleaning efficiency, results obtained by ATR analysis showed the DES-agar gel has good cleaning performance. Furthermore, we proposed micro-SORS as a valuable alternative non-destructive method to explore the DES diffusion on painting mock-up. As a result, the micro-SORS was successful applied for monitoring the liquid diffusion behavior in painting sub-layer, providing a great and useful instrument for noninvasive residues detection in the conservation field.
Resumo:
Cancer represents one of the most relevant and widespread diseases in the modern age. In this context, integrin receptors are important for the interactions of cells with extracellular matrix and for the development of both inflammation and carcinogenic phenomena. There are many tricks to improve the bioactivity and receptor selectivity of exogenous ligands; one of these is to integrate the amino acid sequence into a cyclic peptide to restrict its conformational space. Another approach is to develop small peptidomimetic molecules in order to enhance the molecular stability and open the way to versatile synthetic strategies. Starting from isoxazoline-based peptidomimetic molecules we recently reported, in this thesis we are going to present the synthesis of new integrin ligands obtained by modifying or introducing appendages on already reported structures. Initially, we are going to introduce the synthesis of linear and cyclic α-dehydro-β-amino acids as scaffolds for the preparation of bioactive peptidomimetics. Subsequently, we are going to present the construction of small molecule ligands (SMLs) based delivery systems performed starting from a polyfunctionalised isoxazoline scaffold, whose potency towards αVβ3 and α5β1 integrins has already been established by our research group. In the light of these results and due to the necessity to understand the behaviour of a single enantiomer of the isoxazoline-based compounds, the research group decided to synthesise the enantiopure heterocycle using a 1,3-dipolar cycloaddiction approach. Subsequently, we are going to introduce the synthesis of a Reporting Drug Delivery System composed by a carrier, a first spacer, a linker, a self-immolative system, a second spacer and a latent fluorophore. The last part of this work will describe the results obtained during the internship abroad in Prof. Aggarwal’s laboratory at the University of Bristol. The project was focused on the Mycapolyol A synthesis.
Resumo:
Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.
Resumo:
The aim of this study is to describe the changes in nursing education during the process prior to and after the establishment of democracy in Spain. It begins with the hypothesis that differences in social and political organization influenced the way the system of nursing education evolved, keeping it in line with neopositivistic schemes and exclusively technical approaches up until the advent of democracy. The evolution of a specific profile for nursing within the educational system has been shaped by the relationship between the systems of social and political organization in Spain. To examine the insertion of subjects such as the anthropology of healthcare into education programs for Spanish nursing, one must consider the cultural, intercultural and transcultural factors that are key to understanding the changes in nursing education that allowed for the adoption of a holistic approach in the curricula. Until the arrival of democracy in 1977, Spanish nursing education was solely technical in nature and the role of nurses was limited to the tasks and procedures defined by the bureaucratic thinking characteristic of the rational-technological paradigm. Consequently, during the long period prior to democracy, nursing in Spain was under the influence of neopositivistic and technical thinking, which had its effect on educational curricula. The addition of humanities and anthropology to the curricula, which facilitated a holistic approach, occurred once nursing became a field of study at the university level in 1977, a period that coincided with the beginnings of democracy in Spain.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
In this study, further improvements regarding the fault location problem for power distribution systems are presented. The proposed improvements relate to the capacitive effect consideration on impedance-based fault location methods, by considering an exact line segment model for the distribution line. The proposed developments, which consist of a new formulation for the fault location problem and a new algorithm that considers the line shunt admittance matrix, are presented. The proposed equations are developed for any fault type and result in one single equation for all ground fault types, and another equation for line-to-line faults. Results obtained with the proposed improvements are presented. Also, in order to compare the improvements performance and demonstrate how the line shunt admittance affects the state-of-the-art impedance-based fault location methodologies for distribution systems, the results obtained with two other existing methods are presented. Comparative results show that, in overhead distribution systems with laterals and intermediate loads, the line shunt admittance can significantly affect the state-of-the-art methodologies response, whereas in this case the proposed developments present great improvements by considering this effect.