981 resultados para Thyroid Hormone Receptors beta
Resumo:
The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are essential for survival; they are involved in the processes of development, growth, and metabolism. In addition to hyperthyroidism or hypothyroidism, THs are involved in other diseases. The role of THs in the development and differentiation of mammary epithelium is well established; however, their specific role in the pathogenesis of breast cancer (BC) is controversial. Steroid hormones affect many human cancers and the abnormal responsiveness of the mammary epithelial cells to estradiol (E2) in particular is known to be an important cause for the development and progression of BC. The proliferative effect of T3 has been demonstrated in various types of cancer. In BC cell lines, T3 may foster the conditions for tumor proliferation and increase the effect of cell proliferation by E2; thus, T3 may play a role in the development and progression of BC. Studies show that T3 has effects similar to E2 in BC cell lines. Despite controversy regarding the relationship between thyroid disturbances and the incidence of BC, studies show that thyroid status may influence the development of tumor, proliferation and metastasis.
Resumo:
Substances that mimic endogenous hormones may alter the cell signaling that govern prostate development and predispose it to developing lesions in adult and senile life. Bisphenol A is able to mimic estrogens, and studies have demonstrated that low levels of exposure to this compound have caused alterations during prostate development. The aim of this study was to describe the prostate development in both male and female neonatal gerbils in normal conditions and under exposure to BPA during intrauterine life, and also to analyze whether the effects of intrauterine exposure to BPA remain in adulthood. Morphological, stereological, three-dimensional reconstruction, and immunohistochemical methods were employed. The results demonstrated that in 1-day-old normal gerbils, the female paraurethral glands and the male ventral lobe are morphologically similar, although its tissue components-epithelial buds (EB), periurethral mesenchyme (PeM), paraurethral mesenchyme (PaM) or ventral mesenchymal pad (VMP), and smooth muscle (SM)-have presented different immunolabeling pattern for androgen receptor (AR), and for proliferating cell nuclear antigen (PCNA). Moreover, we observed a differential response of male and female prostate to intrauterine BPA exposure. In 1-day-old males, the intrauterine exposure to BPA caused a decrease of AR-positive cells in the PeM and SM, and a decrease of the proliferative status in the EB. In contrast, no morphological alterations were observed in ventral prostate of adult males. In 1-day-old females, BPA exposure promoted an increase of estrogen receptor alpha (ERα) positive cells in PeM and PaM, a decrease of AR-positive cells in EB and PeM, besides a reduction of cell proliferation in EB. Additionally, the adult female prostate of BPA-exposed animals presented an increase of AR- and PCNA-positive cells. These results suggest that the prostate of female gerbils were more susceptible to the intrauterine BPA effects, since they became more proliferative in adult life. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.
Resumo:
Background: Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T-3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T-3 and insulin action. Methods: Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T-3. Results: Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T-3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T-3 treatment; however, in these cells glucose transport was not stimulated by T-3. In wild-type L6 cells, although T-3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T-3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T-3 plus insulin. Conclusions: These data reveal that T-3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T-3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT.
Resumo:
Objective: To perform a global gonadal and sexual functions assessment in primary antiphospholipid syndrome (PAPS) patients. Methods: A cross-sectional study was conducted in 12 male PAPS patients and 20 healthy controls. They were assessed by demographic data, clinical features, systematic urological examination, sexual function, testicular ultrasound, seminal parameters according to the World Health Organization (WHO), seminal sperm antibodies, and hormone profile, including follicle stimulating hormone (FSH), luteinizing hormone (LH), morning total testosterone, and thyroid hormones. Results: The median of current age and age of spermarche were similar in PAPS patients and controls (37.5 vs. 32.4 years, p = 0.270, and 13.1 vs. 12.85 years, p = 0.224, respectively), with a higher frequency of erectile dysfunction in the former group (25% vs. 0%, p = 0.044). Further analysis of PAPS patients with and without previous arterial thrombosis demonstrated that the median penis circumference was significantly lower in PAPS with arterial thrombosis than in PAPS without this complication (8.1 [6-10] vs. 10.2 [10-11] cm, p = 0.007). In addition, the median penis circumference was significantly lower in PAPS patients with erectile dysfunction than in patients without this complication (7.5 [6-9.5] vs. 9.5 [7.5-11] cm, p = 0.039). Regarding seminal analysis, the median sperm concentration, sperm motility, and normal sperm forms by WHO guidelines were comparable in PAPS patients and controls (141.5 [33-575] vs. 120.06 [34.5-329] x 106/ml, p = 0.65; 61.29 [25-80] vs. 65.42 [43-82]%, p = 0.4; 21.12 [10-42.5] vs. 23.95 [10-45]%, p = 0.45, respectively), and none of them had oligo/azoospermia. No differences were observed between PAPS patients and controls regarding the frequency of antisperm antibodies, testicular volume by ultrasound, or hormone profile (FSH, LH, morning total testosterone, and thyroid hormone) (p > 0.05). Conclusions: Normal testicular function has been identified in PAPS patients, in spite of morphofunctional penile abnormalities. Previous arterial thrombosis may underlie penile anthropometry alteration. Lupus (2012) 21, 251-256.
Resumo:
Gestational hypothyroidism is a prevalent disorder in pregnant women. We aimed to investigate the impact of experimental gestational hypothyroidism (EGH) on cardiovascular and autonomic nervous systems (ANS) in the offspring of rats. EGH was induced with methimazole (MMI) 0.02% in drinking water from day 9 of gestation until birth. Sixty day old offspring from MMI-treated dams (OMTD, n = 13) or water-treated dams (OWTD, n = 13) had femoral arteries surgically assessed for the measurements of heart rate (HR), mean (MAP), systolic (SAP) and diastolic arterial pressure (DAP), and spontaneous baroreflex sensitivity (BRS). To investigate the balance of ANS, we established the high (HF) and low frequency (LF) bands of pulse interval (PI) and LF band of SAP spectrum. OMTD had increased MAP (130.2 +/- 2.0 vs 108.8 +/- 3.0 mm Hg, p<0.001), SAP (157.3 +/- 2.9 vs 135.7 +/- 4.5 mm Hg, p<0.001) and DAP (109.7 +/- 1.9 vs 88.4 +/- 2.6 mm Hg, p<0.001) when compared to OWED, and had lower HR (355.1 +/- 8.9 vs 386.8 +/- 9.2 bpm, p<0.05). After spectral analysis of PI and SAP, only LF band of SAP spectrum was higher (7.2 +/- 0.8 vs 4.0 +/- 0.6 mm Hg-2, p<0.01) in OMTD under spontaneous condition. Despite bradycardia, EGH promotes spontaneous hypertension in 60 day old offspring, probably due to increased sympathetic modulation of vessels, which is suggested by the higher LF of SAP. These findings suggest a critical role of maternal THs in the development of fetal cardiovascular and autonomic nervous systems. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T-3) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T-3 effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T-3 on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T-3 was investigated. Our data confirmed that T-3 rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T-3. In addition, T-3 rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T-3 treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T-3 exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T-3 rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes. Journal of Molecular Endocrinology (2012) 49, 11-20
Resumo:
Previous studies have indicated that AMP-activated protein kinase (AMPK) plays a critical role in the control of cardiac hypertrophy mediated by different stimuli such as thyroid hormone (TH). Although the classical effects of TH mediating cardiac hypertrophy occur by transcriptional mechanisms, recent studies have identified other responses to TH, which are more rapid and take place in seconds or minutes evidencing that TH rapidly modulates distinct signaling pathway, which might contribute to the regulation of cardiomyocyte growth. Here, we evaluated the rapid effects of TH on AMPK signaling pathway in cultured cardiomyocytes and determined the involvement of AMPK in T3-induced cardiomyocyte growth. We found for the first time that T3 rapidly activated AMPK signaling pathway. The use of small interfering RNA against AMPK resulted in increased cardiomyocyte hypertrophy while the pharmacological stimulation of AMPK attenuated this process, demonstrating that AMPK contributes to regulation of T3-induced cardiomyocyte growth.
Resumo:
ZusammenfassungIn dieser Arbeit konnte gezeigt werden, dass neben dem Oxytocinrezeptor auch die anderen Rezeptoren der Familie der Neurohypophysenhormone, die Vasopressinrezeptoren, in der gleichen Weise in ihren Bindungseigenschaften von Cholesterin beeinflusst werden. Im Gegensatz dazu zeigt der Cholecystokininrezeptor Typ B keine direkte Wechselwirkung mit Cholesterin. Durch Austausch der Transmembranhelices 6 und 7 des Oxytocinrezeptors mit entsprechenden Bereichen des Cholecystokininrezeptors wurde ein Rezeptor erzeugt, der bezüglich Bindungsverhalten und Cholesterinabhängigkeit keine Unterschiede zu dem Wildtyp-Oxytocinrezeptor zeigte. Durch den Einsatz von computergestütztem 'Modeling' wurde für die Interaktion des Oxytocinrezeptors mit Cholesterin eine Stelle zwischen den Transmembranhelices 5 und 6 vorgeschlagen. Um die Verteilung des Cholesterins in der Zelle zu untersuchen, wurde ein selbst synthetisiertes, fluoreszierendes Cholesterinderivat (Fluochol) eingesetzt. Die Komplexierung in Cyclodextrinen ermöglichte die Einlagerung von Fluochol in die Plasmamembran von Zellen. Der Einstrom des Fluochol in das ER erfolgte innerhalb von Minuten und war energieunabhängig. Schließlich wurde Fluochol in Lipidtröpfchen transportiert, die in fast allen Zellen für die Speicherung überschüssiger intrazellulärer Lipide dienen. Die Tröpfchen werden aus dem endoplasmatischen Retikulum gebildet und enthalten neben Phospholipiden auch Cholesterin, das durch das Enzym ACAT mit langkettigen Fettsäuren verestert wird.
Resumo:
Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer.
Resumo:
Four male Pomeranians that showed alopecia with an age of onset between five months and eight years were investigated.The aim of the investigation was to clarify whether the affected dogs had alopecia X and whether their symptoms might be due to a hereditary defect.The four affected dogs showed hairless patches at the root of the tail, at the back, at the limbs from the thigh to the tarsus and at the abdomen. Within the hairless patches some islets with sparse hair were present. In hairless patches the skin was dark pigmented. Besides the alopecia and hyperpigmentation no other symptoms were found according to anamnestic and clinical examination. History, clinical examinations, laboratory diagnostics, and histopathology of skin biopsies allowed the diagnosis of alopecia X in three affected male dogs.The last one of the affected dogs additionally had slightly reduced thyroid hormone levels. Based on identical symptoms and the close relatedness of all four animals, it was assumed that the fourth affected dog also had alopecia X.The available data possibly indicate a monogenic autosomal dominant inheritance, however a recessive inheritance can not be excluded at this time.