766 resultados para TS fuzzy system: Fuzzy Lyapunov functions
Resumo:
Este trabalho utiliza a metodologia six sigma com o objetivo de aumentar a produtividade da Linha de LCD (Liquid Crystal Display) em uma fábrica do Pólo Industrial de Manaus - PIM e um sistema de inferência fuzzy para mensurar o aumento dessa produtividade, onde foram identificados vários parâmetros baseados na metodologia six sigma. Dentre os quais, conforme grau de relevância dos especialistas deste estudo, pode-se destacar: desperdícios, capacidade produtiva e estudo de tempos. Ressaltando ainda que o sistema proposto seja de grande importância para profissionais e pesquisadores da gestão da produção, os quais desejam resultados que reduzam custos e conseqüentemente aumente os lucros da organização.
Resumo:
Neste trabalho são apresentados os resultados de uma técnica que permitiu implementar a estratégia de controle de temperatura do aquecedor de óleo térmico da fabrica de Anodo Verde da Albrás Alumínio Brasileiro S/A. No projeto utilizou-se um sistema hierarquizado baseado em conjuntos e lógica Fuzzy. O uso dessa metodologia fez com que o sistema fosse capaz de reagir adequadamente diante das variações do ponto de operação do aquecedor, pois o controle Fuzzy exibe algumas características do aprendizado humano, sendo considerado um exemplo de inteligência artificial. O aquecedor de óleo térmico é fundamental no processo de fabricação de blocos inódicos, utilizados como pólo positivo no processo de eletrólise na obtenção do alumínio primário. O sistema de óleo térmico aquece os misturadores e pré-aquecedor de coque, mantendo a temperatura desses equipamentos dentro dos limites estabelecidos pela engenharia de processo. A variável temperatura impacta diretamente na energia de mistura da pasta e na qualidade do produto final, que é o bloco anódico. A metodologia apresentada permitiu alcançar um controle de temperatura que atendeu satisfatoriamente os parâmetros de processo. O programa foi desenvolvido em linguagem ladder é executado em controladores lógicos programáveis (CLP’S) da Rockwell Automation. O controle já está em plena operação nas fábricas de anodos e os resultados obtidos demonstram a eficácia e viabilidade do sistema, que futuramente estará sendo implementado no controle de outros equipamentos da Albrás.
Resumo:
Através do uso da programação em linguagem orientada a objetos e, aplicando-se uma técnica de programação específica, é possível gerar um conjunto de classes genéricas cujos objetos representam cada bloco de um controlador fuzzy e também suas variáveis linguísticas. Tais classes, sendo aplicadas de forma sistemática, facilitam a programação de uma variedade de controladores desta natureza. Este trabalho apresenta a referida técnica e mostra os resultados obtidos através de um modelo simulado de um pêndulo rotacional invertido que é controlado por um sistema de controle composto por três controladores fuzzy, projetados e construídos sob este ponto de vista.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
Este artigo apresenta novas estratégias de controle fuzzy aplicadas ao conversor estático interligado ao rotor dos geradores de indução duplamente excitados (DFIG), em esquemas eólicos de velocidade variável, integrados a redes elétricas reais. As estratégias de controle propostas são do tipo fuzzy "look-up-table" com supervisão. O desempenho de tais reguladores, baseados em inteligência computacional, é comparado com o obtido com controladores PI's a parâmetros fixos, na ocorrência de faltas no sistema elétrico de potência. Esses controladores fuzzy são destinados a garantir a continuidade da operação dos conversores, e melhorar o desempenho transitório do sistema, em relação aos controladores convencionais. Os resultados apresentados confirmam a eficácia das estratégias de controle adotadas. O modelo físico dos aerogeradores, consistindo de um grande número de turbinas eólicas, foi implementado através de uma ferramenta de simulação dinâmica, desenvolvida no ambiente computacional MATLABTM.
Resumo:
O presente trabalho demonstra a aplicação de um Algoritmo Genético com o intuito de projetar um controlador Fuzzy MISO, através da sintonia de seus parâmetros, em um processo experimental de nivelamento de líquido em um tanque, cuja dinâmica apresenta características não-lineares. Para o projeto e sintonia do controlador, foi utilizado o suporte do software Matlab, e seus pacotes Simulink e Global Optimization Toolbox. O Controlador Fuzzy ora projetado teve seu desempenho avaliado através de ensaios em tempo real em um Sistema de Nível de Liquido.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Currently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha(-1)), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selviria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main objective of the presented study is the development of a predictive interval type-2 fuzzy inference system in order to estimate the mortality risk for a newborn, to be used as an auxiliary tool for decision making in medical centers where there is a lack of professionals for this purpose and, afterwards, to compare its performance to a type-1 fuzzy system. The input variables were chosen due to their acquisition ‘simplicity, not involving any invasive tests, such as blood tests or other specific tests. The variables are easily obtained in the first few minutes of life: birth weight, gestational age at delivery, 5-minute Apgar score and previous report of stillbirth. Databases from the DATASUS were used to validate the model. 1351 records from the city of São José dos Campos, a mid-sized city in the São Paulo state’s countryside, were considered in this study. Finally, an analysis using the ROC curve was performed to estimate the model’s accuracy
Resumo:
In this work was developed a fuzzy computational model type-2 predictive interval, using the software of the type-2 fuzzy MATLAB toolbox, the final idea is to estimate the number of hospitalizations of patients with respiratory diseases. The interest in the creation of this model is to assist in decision makeshift hospital environment, where there are no medical or professional equipment available to provide the care that the population need. It began working with the study of fuzzy logic, the fuzzy inference system and fuzzy toolbox. Through a real database provided by the Departamento de Informática do Sistema Único de Saúde (DATASUS) and Companhia de Tecnologia de Saneamento Básico (CETESB), was possible to start the model. The analyzed database is composed of the number of patients admitted with respiratory diseases a day for the public hospital in São José dos Campos, during the year 2009 and by factors such as PM10, SO2, wind and humidity. These factors were analyzed as input variables and, through these, is possible to get the number of admissions a day, which is the output variable of the model. For data analysis we used the fuzzy control method type-2 Mamdani. In the following steps the performance developed in this work was compared with the performance of the same model using fuzzy logic type-1. Finally, the validity of the models was estimated by the ROC curve
Resumo:
The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented