1000 resultados para Subjecte explícit
Resumo:
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomor phism, and prove the conjecture in several cases. In these same cases - Z-stable algebras all - we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of Z-stable C*-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott's classification conjecture -that K-theoretic invariants will classify separable and nuclear C*-algebras- with the recent appearance of counterexamples to its strongest concrete form.
Resumo:
Using the nonsmooth variant of minimax point theorems, some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
We describe fractal tessellations of the complex plane that arise naturally from Cannon-Thurston maps associated to complete, hyperbolic, once-punctured-torus bundles. We determine the symmetry groups of these tessellations.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
Resumo:
We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.
Resumo:
We prove a general Zariski-van Kampen-Lefschetz type theorem for higher homotopy groups of generic and nongeneric pencils on singular open complex spaces.
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."