995 resultados para SnO2 nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new methodology has been developed for synthesizing lanthanide trifluoride (LnF(3)) nanoparticles using a simple diffusion technique. The approach uses a lanthanide based hydrogel matrix to control the kinetics of the reaction, which also acts as a stabilizing platform, thus enabling the room temperature, in situ synthesis of finely sized (3-5 nm), monodisperse nanoparticles that were found to form in an ordered pattern on the gel fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 +/- 5 nm, which increased to 40 +/- S nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 degrees C near their pK(a) values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full solar spectrum absorbers are widely pursued for applications related to photocatalysis and photovoltaics. Here we report multivalent Cu-doped ZnO nanoparticles which exhibit full solar spectrum absorbance and high photoactivity. Metathesis-based, green-chemical approaches with synthesis yield of similar to 100% are used. Cu incorporation in ZnO results in an increase of average solar spectrum absorbance from a mere 0.4% to 34%. On the other hand, (Zn, Cu)0 composites result in materials with up to 64% average solar spectrum absorbance. Doped systems operate well under both visible and UV illumination. The nanomaterials prepared are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). Photocatalysts explored have particle sizes >= 50 nm. This is deliberately done in order to avoid the nanotoxic size regime of ZnO. Despite the large particle size and low specific surface area (<20 m(2).g(-1)), the best catalyst reported here compare favorably with recent reports on ZnO based systems. Using X-photoelectron spectroscopy and synthesis property correlations, we infer that the presence of multivalent Cu (most likely in the form of Cu1+delta) on ZnO surface is responsible for the observed photoactivity enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right-and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodisperse colloidal gold-indium (AuIn2) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn2 intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn2 with particle size distribution of 3.7 +/- 1.0 nm and 5.0 +/- 1.6 nm, respectively. UV-visible spectral studies brought out the absence of SPR band in pure AuIn2 intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn2 intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag3In intermetallic nanoparticles with the dimension of less than 10 nm. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 Delta pmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-gamma, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.