999 resultados para Ship models.
Resumo:
Process modeling grammars are used to create scripts of a business domain that a process-aware information system is intended to support. A key grammatical construct of such grammars is known as a Gateway. A Gateway construct is used to describe scenarios in which the workflow of a process diverges or converges according to relevant conditions. Gateway constructs have been subjected to much academic discussion about their meaning, role and usefulness, and have been linked to both process-modeling errors and process-model understandability. This paper examines perceptual discriminability effects of Gateway constructs on an individual's abilities to interpret process models. We compare two ways of expressing two convergence and divergence patterns – Parallel Split and Simple Merge – implemented in a process modeling grammar. On the basis of an experiment with 98 students, we provide empirical evidence that Gateway constructs aid the interpretation of process models due to a perceptual discriminability effect, especially when models are complex. We discuss the emerging implications for research and practice, in terms of revisions to grammar specifications, guideline development and design choices in process modeling.
Resumo:
The configuration of comprehensive Enterprise Systems to meet the specific requirements of an organisation up to today is consuming significant resources. The results of failing implementation projects are severe and may even threaten the organisation’s existence. This paper proposes a method which aims at increasing the efficiency of Enterprise Systems implementations. First, we argue that existing process modelling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we motivate that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the mechanisms by which this model configuration can be achieved. We introduce a business example using SAP modelling techniques to illustrate the proposed method.
Resumo:
Biological systems exhibit a wide range of contextual effects, and this often makes it difficult to construct valid mathematical models of their behaviour. In particular, mathematical paradigms built upon the successes of Newtonian physics make assumptions about the nature of biological systems that are unlikely to hold true. After discussing two of the key assumptions underlying the Newtonian paradigm, we discuss two key aspects of the formalism that extended it, Quantum Theory (QT). We draw attention to the similarities between biological and quantum systems, motivating the development of a similar formalism that can be applied to the modelling of biological processes.
Resumo:
The term Design Led Innovation is emerging as a fundamental business process, which is rapidly being adopted by large as well as small to medium sized firms. The value that design brings to an organisation is a different way of thinking, of framing situations and possibilities, doing things and tackling problems: essentially a cultural transformation of the way the firm undertakes its business. Being Design Led is increasingly being seen by business as a driver of company growth, allowing firms to provide a strong point of difference to its stakeholders. Achieving this Design Led process, requires strong leadership to enable the organisation to develop a clear vision for top line growth. Specifically, based on deep customer insights and expanded through customer and stakeholder engagements, the outcomes of which are then adopted by all aspects of the business. To achieve this goal, several tools and processes are available, which need to be linked to new organisational capabilities within a business transformation context. The Design Led Innovation Team focuses on embedding tools and processes within an organisation and matching this with design leadership qualities to enable companies to create breakthrough innovation and achieve sustained growth, through ultimately transforming their business model. As all information for these case studies was derived from publicly accessed data, this resource is not intended to be used as reference material, but rather is a learning tool for designers to begin to consider and explore businesses at a strategic level. It is not the results that are key, but rather the process and philosophies that were used to create these case studies and disseminate this way of thinking amongst the design community. It is this process of unpacking a business guided by the framework of Osterwalder’s Business Model Canvas* which provides an important tool for designers to gain a greater perspective of a company’s true innovation potential.
Resumo:
In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.
Resumo:
Ship-breaking started as an industry in Bangladesh in the early 1970s. This industry is not technically organized, and the management is also primitive and unsound. Although specific information is not available, it is estimated that about 700 workers have been killed and, at the same time, a total of 10,000 workers have been injured in explosions at the ship-breaking yards over the last three decades. This process continues unabated in the absence of specific legislation for regulating ship-breaking industries in Bangladesh. Against this backdrop, this paper identifies the major issues relating to enforcement of labour rights in the ship-breaking yards of Bangladesh.
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...
Resumo:
The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.
Resumo:
Radio Frequency Identification is a wireless identification method that utilizes the reception of electromagnetic radio waves. This research has proposed a novel model to allow for an in-depth security analysis of current protocols and developed new flexible protocols that can be adapted to offer either stronger security or better efficiency.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
This book presents readers with the opportunity to fundamentally re-evaluate the processes of innovation and entrepreneurship, and to rethink how they might best be stimulated and fostered within our organizations and communities. The fundamental thesis of the book is that the entrepreneurial process is not a linear progression from novel idea to successful innovation, but is an iterative series of experiments, where progress depends on the persistence and resilience of the individuals involved, and their ability and to learn from failure as well as success. From this premise, the authors argue that the ideal environment for new venture creation is a form of “experimental laboratory,” a community of innovators where ideas are generated, shared, and refined; experiments are encouraged; and which in itself serves as a test environment for those ideas and experiments. This environment is quite different from the traditional “incubator,” which may impose the disciplines of the established firm too early in the development of the new venture.