905 resultados para SMA wire actuator
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
Rigging screw tensioners to balustrade wire, central deck (North-East elevation).
Resumo:
Curved steel and stainless steel wire balustrade to central deck area (North-East elevation).
Resumo:
Turbulent free jets issuing from rectangular slots with various high aspect ratios (15-120) are characterized. The centerline mean and rms velocities are measured using hot-wire anemometry over a downstream distance of up to 160 slot heights at a slot-height-based Reynolds number of 10000. Experimental results suggest that a rectangular jet with sufficiently high aspect ratio (> 15) may be distinguished between three flow zones: an initial quasi-plane-jet zone, a transition zone, and a final quasi-axisymmetric-jet zone. In the quasi-plane-jet zone, the turbulent velocity field is statistically similar, but not identical, to those of a plane jet. (c) 2005 American Institute of Physics.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.
Resumo:
In most Of the practical six-actuator in-parallel manipulators, the octahedral form is either taken as it stands or is approximated. Yet considerable theoretical attention is paid in the literature to more general forms. Here we touch on the general form, and describe some aspects of its behavior that vitiate strongly against its adoption as a pattern for a realistic manipulate,: We reach the conclusion that the structure for in-parallel manipulators must be triangulated as fully as possible, so leading to the octahedral form. In describing some of the geometrical properties of the general octahedron, we show how they apply to manipulators. We examine in detail the special configurations at which the 6 x 6 matrix of leg lines is singular presenting results from the point of view of geometry in preference to analysis. In extending and enlarging on some known properties, a few behavioral surprises materialize. In studying special configurations, we start with the most general situation, and every other case derives from this. Our coverage is more comprehensive than any that we have found. We bring to light material that is, we think, of significant use to a designer.
Resumo:
A novel three-axis gradient set and RF resonator for orthopedic MRT has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an are of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 mu s, conforming closely with theoretical predictions. Preliminary images from the set are presented. (C) 1999 Academic Press.
Resumo:
There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
Resumo:
Anomalies of movement are observed both clinically and experimentally in schizophrenia. While the basal ganglia have been implicated in its pathogenesis, the nature of such involvement is equivocal. The basal ganglia may be involved in bimanual coordination through their input to the supplementary motor area (SMA). While a neglected area of study in schizophrenia. a bimanual movement task may provide a means of assessing the functional integrity of the motor circuit. Twelve patients with chronic schizophrenia and 12 matched control participants performed a bimanual movement task on a set of vertically mounted cranks at different speeds (1 and 2 Hz) and phase relationships. Participants performed in-phase movements (hands separated by 0 degrees) and out-of-phase movements (hands separated by 180 degrees) at both speeds with an external cue on or off. All participants performed the in-phase movements well. irrespective of speed or cueing conditions. Patients with schizophrenia were unable to perform the out-of-phase movements, particularly at the faster speed, reverting instead to the in-phase movement. There was no effect of external cueing on any of the movement conditions. These results suggest a specific problem of bimanual coordination indicative of SMA dysfunction per se and/or faulty callosal integration. A disturbance in the ability to switch attention during the out-of-phase task may also be involved. (C) 2001 Academic Press.
Resumo:
Movement-related potentials (MRPs) reflect increasing cortical activity related to the preparation and execution of voluntary movement. Execution and preparatory components may be separated by comparing MRPs recorded from actual and imagined movement. Imagined movement initiates preparatory processes, but not motor execution activity. MRPs are maximal over the supplementary motor area (SMA), an area of the cortex involved in the planning and preparation of movement. The SMA receives input from the basal ganglia, which are affected in Huntington's disease (HD), a hyperkinetic movement disorder. In order to further elucidate the effects of the disorder upon the cortical activity relating to movement, MRPs were recorded from ten HD patients, and ten age-matched controls, whilst they performed and imagined performing a sequential button-pressing task. HD patients produced MRPs of significantly reduced size both for performed and imagined movement. The component relating to movement execution was obtained by subtracting the MRP for imagined movement from the MRP for performed movement, and was found to be normal in HD. The movement preparation component was found by subtracting the MRP found for a control condition of watching the visual cues from the MRP for imagined movement. This preparation component in HD was reduced in early slope, peak amplitude, and post-peak slope. This study therefore reported abnormal MRPs in HD. particularly in terms of the components relating to movement preparation, and this finding may further explain the movement deficits reported in the disease.
Resumo:
We used positron emission tomography (PET) with O-15-labelled water to record patterns of cerebral activation in six patients with Parkinson's disease (PD), studied when clinically off and after turning on as a result of dopaminergic stimulation. They were asked to imagine a Finger opposition movement performed with their right hand. externally paced at a rate of 1 Hz. Trials alternating between motor imagery and rest were measured. A pilot study of three age-matched controls was also performed. We chose the task as a robust method of activating the supplementary motor area (SMA), defects of which have been reported in PD. The PD patients showed normal de-rees of activation of the SMA (proper) when both off and on. Significant activation with imagining movement also occurred in the ipsilateral inferior parietal cortex (both off and when on) and ipsilateral premotor cortex (when off only). The patients showed significantly greater activation of the rostral anterior cingulate and significantly less activation of the left lingual gyrus and precuneus when performing the task on compared with their performance when off. PD patients when imagining movement and off showed less activation of several sites including the right dorsolateral prefrontal cortex (DLPFC) when compared to the controls performing the same task. No significant differences from controls were present when the patients imagined when on. Our results are consistent with other studies showing deficits of pre-SMA function in PD with preserved function of the SMA proper. In addition to the areas of reduced activation (anterior cingulate, DLPFC), there were also sites of activation (ipsilateral premotor and inferior parietal cortex) previously reported as locations of compensatory overactivity for PD patients performing similar tasks. Both failure of activation and compensatory changes a-re likely to contribute to the motor deficit in PD. (C) 2001 Movement Disorder Society.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.