978 resultados para Rotating electrical machine
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.
Resumo:
In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
Resumo:
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.
Resumo:
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
A large range of underground mining equipment makes use of compliant hydraulic arms for tasks such as rock-bolting, rock breaking, explosive charging and shotcreting. This paper describes a laboratory model electo-hydraulic manipulator which is used to prototype novel control and sensing techniques. The research is aimed at improving the safety and productivity of these mining tasks through automation, in particular the application of closed-loop visual positioning of the machine's end-effector.
Resumo:
Artificial intelligence (AI) applications typically involve encoding expert knowledge in machine form to find optimal solutions for a given problem. However, this paper deals with the opposite process of extracting new and human-comprehensible insights from emergent AI behaviour. Some examples of useful game-related insights drawn from observing AI players in action are presented.
Resumo:
Electrical impedance tomography is a novel technology capable of quantifying ventilation distribution in the lung in real time during various therapeutic manoeuvres. The technique requires changes to the patient’s position to place the electrical impedance tomography electrodes circumferentially around the thorax. The impact of these position changes on the time taken to stabilise the regional distribution of ventilation determined by electrical impedance tomography is unknown. This study aimed to determine the time taken for the regional distribution of ventilation determined by electrical impedance tomography to stabilise after changing position. Eight healthy, male volunteers were connected to electrical impedance tomography and a pneumotachometer. After 30 minutes stabilisation supine, participants were moved into 60 degrees Fowler’s position and then returned to supine. Thirty minutes was spent in each position. Concurrent readings of ventilation distribution and tidal volumes were taken every five minutes. A mixed regression model with a random intercept was used to compare the positions and changes over time. The anterior-posterior distribution stabilised after ten minutes in Fowler’s position and ten minutes after returning to supine. Left-right stabilisation was achieved after 15 minutes in Fowler’s position and supine. A minimum of 15 minutes of stabilisation should be allowed for spontaneously breathing individuals when assessing ventilation distribution. This time allows stabilisation to occur in the anterior-posterior direction as well as the left-right direction.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.
Resumo:
This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
Everything revolves around desiring-machines and the production of desire… Schizoanalysis merely asks what are the machinic, social and technical indices on a socius that open to desiring-machines (Deleuze & Guattari, 1983, pp. 380-381). Achievement tests like NAPLAN are fairly recent, yet common, education policy initiatives in much of the Western world. They intersect with, use and change pre-existing logics of education, teaching and learning. There has been much written about the form and function of these tests, the ‘stakes’ involved and the effects of their practice. This paper adopts a different “angle of vision” to ask what ‘opens’ education to these regimes of testing(Roy, 2008)? This paper builds on previous analyses of NAPLAN as a modulating machine, or a machine characterised by the increased intensity of connections and couplings. One affect can be “an existential disquiet” as “disciplinary subjects attempt to force coherence onto a disintegrating narrative of self”(Thompson & Cook, 2012, p. 576). Desire operates at all levels of the education assemblage, however our argument is that achievement testing manifests desire as ‘lack’; seen in the desire for improved results, the desire for increased control, the desire for freedom, the desire for acceptance to name a few. For Deleuze and Guattari desire is irreducible to lack, instead desire is productive. As a productive assemblage, education machines operationalise and produce through desire; “Desire is a machine, and the object of the desire is another machine connected to it”(Deleuze & Guattari, 1983, p. 26). This intersection is complexified by the strata at which they occur, the molar and molecular connections and flows they make possible. Our argument is that when attention is paid to the macro and micro connections, the machines built and disassembled as a result of high-stakes testing, a map is constructed that outlines possibilities, desires and blockages within the education assemblage. This schizoanalytic cartography suggests a new analysis of these ‘axioms’ of testing and accountability. It follows the flows and disruptions made possible as different or altered connections are made and as new machines are brought online. Thinking of education machinically requires recognising that “every machine functions as a break in the flow in relation to the machine to which it is connected, but at the same time is also a flow itself, or the production of flow, in relation to the machine connected to it”(Deleuze & Guattari, 1983, p. 37). Through its potential to map desire, desire-production and the production of desire within those assemblages that have come to dominate our understanding of what is possible, Deleuze and Guattari’s method of schizoanalysis provides a provocative lens for grappling with the question of what one can do, and what lines of flight are possible.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.