999 resultados para Ribbon structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ternary interstitial nitride Ni2W3N has been synthesized by the ammonolysis of different oxide precursors and characterized by powder X-ray diffraction and electron microscopy. This nitride crystallizes in the cubic space group P4(1)32(213) [Ni2W3N, a=6.663(1) Angstrom, Z=4] and is isostructural with Al2Mo3C. This compound belongs to the rare class of intermetallic ternary nitrides and carbides crystallizing with a filled beta-Mn structure. Ni2W3N is not stable, it decomposes to a new compound NiW3N related to the distorted anti-perovskite, Ca3AsN structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaCrO3 is a wide-band-gap insulator which does not evolve to a metallic state even after hole doping. We report electronic structure of this compound and its Sr substituents investigated by photoemission and inverse photoemission spectroscopies in conjunction with various calculations. The results show that LaCrO 3 is close to the Mott-Hubbard insulating regime with a gap of about 2.8 eV. Analysis of Cr 2p core-level spectrum suggests that the intra-atomic Coulomb interaction strength and the charge-transfer energy to be 5.0 and 5.5 eV, respectively, We also estimate the intra-atomic exchange interaction strength and a crystal-field splitting of about 0.7 and 2.0 eV, respectively. Sr substitution leading to hole doping in this system decreases the charge-excitation gap, but never collapses it to give a metallic behavior. The changes in the occupied as well as unoccupied spectral features are discussed in terms of the formation of local Cr4+ configurations arising from strong electron-phonon interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion such is the integrated diffusion coefficient of the phase, the tracer diffusion coefficient of species at different temperatures and the activation energy for diffusion, are determined in V3Si phase with A15 crystal structure. The tracer diffusion coefficient of Si Was found to be negligible compared to the tracer diffusion coefficient of V. The calculated diffusion parameters will help to validate the theoretical analysis of defect structure of the phase, which plays an important role in the superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies of Bi heteroepitaxy on Si(001) have recently uncovered a self-organised nanoline motif which has no detectable width dispersion. The Bi lines can be grown with an aspect ratio that is greater than 350 : 1. This paper describes a study of the nanoline geometry and electronic structure using a combination of scanning tunneling microscopy (STM) and ab initio theoretical methods. In particular, the effect that the lines have on Si(001) surface structure at large length scales, l > 100 nm, is studied. It has been found that Bi line growth on surfaces that have regularly spaced single height steps results in a 'preferred' domain orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching aim of biomimetic approaches to materials synthesis is to mimic simultaneously the structure and function of a natural material, in such a way that these functional properties can be systematically tailored and optimized. In the case of synthetic spider silk fibers, to date functionalities have largely focused on mechanical properties. A rapidly expanding body of literature documents this work, building on the emerging knowledge of structure–function relationships in native spider silks, and the spinning processes used to create them. Here, we describe some of the benchmark achievements reported until now, with a focus on the last five years. Progress in protein synthesis, notably the expression on full-size spidroins, has driven substantial improvements in synthetic spider silk performance. Spinning technology, however, lags behind and is a major limiting factor in biomimetic production. We also discuss applications for synthetic silk that primarily capitalize on its nonmechanical attributes, and that exploit the remarkable range of structures that can be formed from a synthetic silk feedstock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.