963 resultados para Reef-building Coral


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discarding in commercially exploited fisheries has received considerable attention in the last decade, though only more recently in Australia. The Reef Line fishery (RLF) of the Great Barrier Reef (GBR) in Australia is a large-scale multi-sector, multi-species, highly regulated hook and line fishery with the potential for high levels of discarding. We used a range of data sources to estimate discard rates and discard quantities for the two main target groups of the RLF, the coral trout, Plectropomus spp, and the red throat emperor, Lethrinus miniatus, and investigated possible effects on discarding of recent changes in management of the fishery. Fleet-wide estimates of total annual quantities discarded from 1989 to 2003 were 292-622 t and 33-95 t for coral trout and red throat emperor, respectively. Hypothetical scenarios of high-grading after the introduction of a total allowable commercial catch for coral trout resulted in increases in discard quantities up to 3895 t, while no high-grading still meant 421 t were discarded. Increasing the minimum size limit of red throat emperor from 35 to 38 cm also increased discards to an estimated 103 t. We provide spatially and temporally explicit estimates of discarding for the two most important species in the GBR RLF of Australia to demonstrate the importance of accounting for regional variation in quantification of discarding. Effects of management changes on discarding are also highlighted. This study provides a template for exploring discarding levels for other species in the RLF and elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Including collaboration with industry members as an integral part of research activities is a relatively new approach to fisheries research. Earlier approaches to involving fishers in research usually involved compulsory accommodations of research, such as through compulsory observer programs, in which fishers were seen as subjects of rather than participants in research. This new approach brings with it significant potential benefits but also some unique issues both for the researchers and the participating industry members. In this paper we describe a research project involving the Queensland Coral Reef Finfish Fishery that originated from industry and community concerns about changes in marketing practices in an established commercial line fishery. A key aspect of this project was industry collaboration in all stages of the research, from formulation of objectives to assistance with interpretation of results. We discuss this research as a case study of some of the issues raised by collaboration between industry and research groups in fisheries research and the potential pitfalls and benefits of such collaborations for all parties. A dedicated liaison and extension strategy was a key element in the project to develop and maintain the relationships between fishers and researchers that were fundamental to the success of the collaboration. A major research benefit of the approach was the provision of information not available from other sources: 300 days of direct and unimpeded observation of commercial fishing by researchers; detailed catch and effort records from a further 126 fishing trips; and 53 interviews completed with fishers. Fishers also provided extensive operational information about the fishery as well as ongoing support for subsequent research projects. The time and resources required to complete the research in this consultative framework were greater than for more traditional, researcher-centric fisheries research, but the benefits gained far outweighed the costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three data sets were examined to define the level of interaction of reef associated sharks with the commercial Coral Reef Fin Fish Fishery within the Great Barrier Reef (GBR). Data were examined from fishery logbooks, an observer program within the fishery and a fishery-independent survey conducted as part of the Effects of Line Fishing (ELF) Experiment. The majority of the identified catch was comprised of grey reef (62-72%), whitetip reef (16-29%) and blacktip reef (6-13%) sharks. Logbook data revealed spatially and temporally variable landings of shark from the GBR. Catch per unit effort (CPUE) through time was stable for the period from 1989 to 2006 with no evidence of increase or decline. Data from observer and ELF data sets indicated no differences in CPUE among regions. The ELF data set demonstrated that CPUE was higher in Marine National Park zones (no fishing) when compared to General Use zones (open to fishing). The ongoing and consistent catches of reef sharks in the fishery and effectiveness of no-fishing zones suggest that management zones within the GBR Marine Park are effective at protecting a portion of the reef shark population from exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Great Barrier Reef is a unique World Heritage Area of national and international significance. As a multiple use Marine Park, activities such as fishing and tourism occur along with conservation goals. Managers need information on habitats and biodiversity distribution and risks to ensure these activities are conducted sustainably. However, while the coral reefs have been relatively well studied, less was known about the deeper seabed in the region. From 2003 to 2006, the GBR Seabed Biodiversity Project has mapped habitats and their associated biodiversity across the length and breadth of the Marine Park to provide information that will help managers with conservation planning and to assess whether fisheries are ecologically sustainable, as required by environmental protection legislation (e.g. EPBC Act 1999). Holistic information on the biodiversity of the seabed was acquired by visiting almost 1,500 sites, representing a full range of known environments, during 10 month-long voyages on two vessels and deploying several types of devices such as: towed video and digital cameras, baited remote underwater video stations (BRUVS), a digital echo-sounder, an epibenthic sled and a research trawl to collect samples for more detailed data about plants, invertebrates and fishes on the seabed. Data were collected and processed from >600 km of towed video and almost 100,000 photos, 1150 BRUVS videos, ~140 GB of digital echograms, and from sorting and identification of ~14,000 benthic samples, ~4,000 seabed fish samples, and ~1,200 sediment samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common coral trout, Plectropomus leopardus Lacepede, crimson snapper, Lutjanus erythropterus Bloch, saddletail snapper, Lutjanus malabaricus (Bloch & Schneider), red emperor, Lutjanus sebae (Cuvier), redthroat emperor, Lethrinus miniatus (Schneider) and grass emperor, Lethrinus laticaudis Alleyne & Macleay, were tagged to determine the effects of barotrauma relief procedures (weighted shot-line release and venting using a hollow needle) and other factors on survival. Release condition was the most significant factor affecting the subsequent recapture rate of all species. Capture depth was significant in all species apart from L. malabaricus and L. miniatus, the general trend being reduced recapture probability with increasing capture depth. Recapture rates of fish hooked in either the lip or mouth were generally significantly higher than for those hooked in the throat or gut. Statistically significant benefit from treating fish for barotrauma was found in only L. malabaricus, but the lack of any negative effects of treating fish indicated that the practices of venting and shot-lining should not be discouraged by fisheries managers for these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1999, the Department of Employment, Economic Development and Innovation (DEEDI), Fisheries Queensland undertook a new initiative to collect long term monitoring data of various important stocks including reef fish. This data and monitoring manual for the reef fish component of that program which was based on Underwater Visual Census methodology of 24 reefs on the Great Barrier Reef between 1999 and 2004. Data was collected using six 50m x 5m transects at 4 sites on 24 reefs. Benthic cover type was also recorded for 10m of each transect. The attached Access Database contains 5 tables being: SITE DETAILS TABLE Survey year Data entry complete REF survey site ID Site # (1-4) Location (reef name) Site Date (date surveyed) Observer 1 (3 initials to identify who estimated fish lengths and recorded benthic cover) TRANSECT DETAILS Survey ID Transect Number (1-6) Time (the transect was surveyed) Visibility (in metres) Minimum Depth surveyed (m) Maximum Depth surveyed (m) Percent of survey completed (%) Comments SUBSTRATE Survey ID Transect Number (1-6) then % cover of each of eth following categories of benthic cover types Dead Coral Live Coral Soft Coral Rubble Sand Sponge Algae Sea Grass Other COORDINATES (over survey sites) from -14 38.792 to -19 44.233 and from 145 21.507 to 149 55.515 SIGHTINGS ID Survey ID Transect Number (1-6) CAAB Code Scientific Name Reef Fish Length (estimated Fork Length of fish; -1 = unknown or not recorded) Outside Transect (if a fish was observed outside a transect -1 was recorded) Morph Code (F = footballer morph for Plectropomus laevis, S = Spawning colour morph displayed)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report on evidence of shrinkage of live coral trout during professional fishing operations on the Great Barrier Reef in 2000. Excel data includes the following fields: Column A. Fish (fish number from 1 -24) Column B. Bin (1-8, container the fish was held in during the experiment) Column C. Measure (1-7, number of the measurement of each fish) Column D. Observer (1 or 2, making the measurement) Column E. Time 2 Column F. Time (time of the day the measurement was made) Column G. FL (Fork Length) Column H. TL (Total Length) Column I. Difference (difference in length between measures) Column J. Order Column K. Temperature (surface water temp under the boat)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common coral trout Plectropomus leopardus is an iconic fish of the Great Barrier Reef (GBR) and is the most important fish for the commercial fishery there. Most of the catch is exported live to Asia. This stock assessment was undertaken in response to falls in catch sizes and catch rates in recent years, in order to gauge the status of the stock. It is the first stock assessment ever conducted of coral trout on the GBR, and brings together a multitude of different data sources for the first time. The GBR is very large and was divided into a regional structure based on the Bioregions defined by expert committees appointed by the Great Barrier Reef Marine Park Authority (GBRMPA) as part of the 2004 rezoning of the GBR. The regional structure consists of six Regions, from the Far Northern Region in the north to the Swains and Capricorn–Bunker Regions in the south. Regions also closely follow the boundaries between Bioregions. Two of the northern Regions are split into Subregions on the basis of potential changes in fishing intensity between the Subregions; there are nine Subregions altogether, which include four Regions that are not split. Bioregions are split into Subbioregions along the Subregion boundaries. Finally, each Subbioregion is split into a “blue” population which is open to fishing and a “green” population which is closed to fishing. The fishery is unusual in that catch rates as an indicator of abundance of coral trout are heavily influenced by tropical cyclones. After a major cyclone, catch rates fall for two to three years, and rebound after that. This effect is well correlated with the times of occurrence of cyclones, and usually occurs in the same month that the cyclone strikes. However, statistical analyses correlating catch rates with cyclone wind energy did not provide significantly different catch rate trends. Alternative indicators of cyclone strength may explain more of the catch rate decline, and future work should investigate this. Another feature of catch rates is the phenomenon of social learning in coral trout populations, whereby when a population of coral trout is fished, individuals quickly learn not to take bait. Then the catch rate falls sharply even when the population size is still high. The social learning may take place by fish directly observing their fellows being hooked, or perhaps heeding a chemo-sensory cue emitted by fish that are hooked. As part of the assessment, analysis of data from replenishment closures of Boult Reef in the Capricorn–Bunker Region (closed 1983–86) and Bramble Reef in the Townsville Subregion (closed 1992–95) estimated a strong social learning effect. A major data source for the stock assessment was the large collection of underwater visual survey (UVS) data collected by divers who counted the coral trout that they sighted. This allowed estimation of the density of coral trout in the different Bioregions (expressed as a number of fish per hectare). Combined with mapping data of all the 3000 or so reefs making up the GBR, the UVS results provided direct estimates of the population size in each Subbioregion. A regional population dynamic model was developed to account for the intricacies of coral trout population dynamics and catch rates. Because the statistical analysis of catch rates did not attribute much of the decline to tropical cyclones, (and thereby implied “real” declines in biomass), and because in contrast the UVS data indicate relatively stable population sizes, model outputs were unduly influenced by the unlikely hypothesis that falling catch rates are real. The alternative hypothesis that UVS data are closer to the mark and declining catch rates are an artefact of spurious (e.g., cyclone impact) effects is much more probable. Judging by the population size estimates provided by the UVS data, there is no biological problem with the status of coral trout stocks. The estimate of the total number of Plectropomus leopardus on blue zones on the GBR in the mid-1980s (the time of the major UVS series) was 5.34 million legal-sized fish, or about 8400 t exploitable biomass, with an 2 additional 3350 t in green zones (using the current zoning which was introduced on 1 July 2004). For the offshore regions favoured by commercial fishers, the figure was about 4.90 million legal-sized fish in blue zones, or about 7700 t exploitable biomass. There is, however, an economic problem, as indicated by relatively low catch rates and anecdotal information provided by commercial fishers. The costs of fishing the GBR by hook and line (the only method compatible with the GBR’s high conservation status) are high, and commercial fishers are unable to operate profitably when catch rates are depressed (e.g., from a tropical cyclone). The economic problem is compounded by the effect of social learning in coral trout, whereby catch rates fall rapidly if fishers keep returning to the same fishing locations. In response, commercial fishers tend to spread out over the GBR, including the Far Northern and Swains Regions which are far from port and incur higher travel costs. The economic problem provides some logic to a reduction in the TACC. Such a reduction during good times, such as when the fishery is rebounding after a major tropical cyclone, could provide a net benefit to the fishery, as it would provide a margin of stock safety and make the fishery more economically robust by providing higher catch rates during subsequent periods of depressed catches. During hard times when catch rates are low (e.g., shortly after a major tropical cyclone), a change to the TACC would have little effect as even a reduced TACC would not come close to being filled. Quota adjustments based on catch rates should take account of long-term trends in order to mitigate variability and cyclone effects in data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young carers are at increased risk of developing mental health and social problems. The objective was to pilot a camp-based resiliencebuilding programme for young carers. Twelve young carers (12 to 14 years) recruited from Carers Queensland attended a 3-day resilience-building camp adapted from the Resourceful Adolescent Program. One month after the camp, carers participated in a semistructured telephone interview. Thematic analysis was used to analyse the data. Two key themes emerged. The first, coping self-efficacy, included subthemes of affect regulation, interpersonal skills, and recognition of strengths and coping ability. The second key theme, social benefits, included opportunities for respite and social engagement. Overall, participants reported enjoying the camp and would recommend it to other young carers, yet they were able to provide some suggestions to improve future camps. Implementing an integrative resilience-building program such as the Resourceful Adolescent Program in a camp format shows promise as a way of both engaging and benefiting young carers, as well as selective populations more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 +/- 1.0 and 0.6 +/- 0.5 cm mo(-1) over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R-2 = 0.75, p < 0.001) and WBD (R-2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages)