976 resultados para QUANTUM-STATE
Resumo:
The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.
Resumo:
We have obtained the parameter-phase diagram, which unambiguously defines the parameter region for the use of InAs/GaAs quantum dot as two-level quantum system in quantum computation in the framework of the effective-mass envelope function theory. Moreover, static electric field is found to efficiently prolong decoherence time. As a result, decoherence time may reach the order of magnitude of milli-seconds as external static electric field goes beyond 20 kV/cm if only vacuum fluctuation is taken as the main source for decoherence. Our calculated results are useful for guiding the solid-state implementation of quantum computing.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy and characterized by photoluminescence (PL). For both single- and multi-layer QDs, PL intensity of the first excited state is larger than that of the ground state at 15 K. Conversely, at room temperature (RT), PL intensity of the first excited state is smaller than that of the ground state. This result is explained by the phonon bottleneck effect. To the ground state, the PL intensities of the multi-layer QDs are larger than that of the single-layer QDs at 15 K, while the intensities are smaller than that of the single-layer QDs at RT. This is due to the defects in the multi-layer QD samples acting as the nonradiative recombination centers. The inter-diffusion of Ga and In atoms in the growth process of multi-layer QDs results in the PL blueshift of the ground state and broadening of the full-width at half-maximum (FWHM), which can be avoided by decreasing the spacers' growth temperature. At the spacers' growth temperature of 520degreesC, we have prepared the 5-layer QDs which emit near 1.3 mum with a FWHM of 31.7 meV at RT, and 27.9 meV at 77 K. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.
Resumo:
Excitonic states in AlxGa1-xN/GaN quantum wells (QWs) are studied within the framework of effective-mass theory. Spontaneous and piezoelectric polarizations are included and their impact on the excitonic states and optical properties are studied. We witnessed a significant blue shift in transition energy when the barrier width decreases and we attributed this to the redistribution of the built-in electric field between well layers and barrier layers. For the exciton the binding energies, we found in narrow QWs that there exists a critical value for barrier width, which demarcates the borderline for quantum confinement effect and the quantum confined Stark effect. Exciton and free carrier radiative lifetimes are estimated by simple argumentation. The calculated results suggest that there are efficient non-radiative mechanisms in narrow barrier QWs. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
Resumo:
Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.
Resumo:
The quantum wave function and the corresponding energy levels of the dissipative mesoscopic capacitance coupling circuits are obtained by using unitary and linear transformations. The quantum fluctuation of charge and current in an arbitrary eigenstate of the system have been also given. The results show that the fluctuation of charge and current depends on not only the eigenstate but also the electronic device parameters.
Resumo:
The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.
Resumo:
Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].